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Abstract—Data center power is a scarce resource that
often goes underutilized due to conservative planning. This
is because the penalty for overloading the data center power
delivery hierarchy and tripping a circuit breaker is very high,
potentially causing long service outages. Recently, dynamic
server power capping, which limits the amount of power
consumed by a server, has been proposed and studied as a way
to reduce this penalty, enabling more aggressive utilization
of provisioned data center power. However, no real at-scale
solution for data center-wide power monitoring and control
has been presented in the literature.

In this paper, we describe Dynamo – a data center-wide
power management system that monitors the entire power
hierarchy and makes coordinated control decisions to safely
and efficiently use provisioned data center power. Dynamo
has been developed and deployed across all of Facebook’s
data centers for the past three years. Our key insight is that
in real-world data centers, different power and performance
constraints at different levels in the power hierarchy necessi-
tate coordinated data center-wide power management.

We make three main contributions. First, to understand
the design space of Dynamo, we provide a characterization
of power variation in data centers running a diverse set of
modern workloads. This characterization uses fine-grained
power samples from tens of thousands of servers and spanning
a period of over six months. Second, we present the detailed
design of Dynamo. Our design addresses several key issues
not addressed by previous simulation-based studies. Third,
the proposed techniques and design have been deployed
and evaluated in large scale data centers serving billions of
users. We present production results showing that Dynamo
has prevented 18 potential power outages in the past 6
months due to unexpected power surges; that Dynamo enables
optimizations leading to a 13% performance boost for a
production Hadoop cluster and a nearly 40% performance
increase for a search cluster; and that Dynamo has already
enabled an 8% increase in the power capacity utilization
of one of our data centers with more aggressive power
subscription measures underway.
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I. INTRODUCTION

Warehouse-scale data centers consist of many thousands
of machines running a diverse set of workloads and comprise
the foundation of the modern web. The power delivery infras-
tructure supplying these data centers is equipped with power
breakers designed to protect the data center from damage
due to electrical surges. While tripping a power breaker
ultimately protects the physical infrastructure of a data center,
its application-level effects can be disastrous, leading to long
service outages at worst and degraded user experience at best.

Given how severe the outcomes of tripping a power breaker
are, data center operators have traditionally taken a con-
servative approach by over-provisioning data center power,
provisioning for worst-case power consumption, and further
adding large power buffers [1], [2]. While such an approach
ensures safety and reliability with high confidence, it is
wasteful in terms of power infrastructure utilization – a scarce
data center resource. For example, it may take several years
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to construct a new power delivery infrastructure and every
megawatt of power capacity can cost around 10 to 20 million
USD [2], [3].

Under-utilizing data center power is especially inefficient
because power is frequently the bottleneck resource limiting
the number of servers that a data center can house. It is
even more so with the recent trend of increasing server
power density [4], [5]. Figure 1 shows that server peak power
consumption nearly doubled going from the 2011 server (24-
core Westmere-based) to the 2015 server (48-core Haswell-
based) at Facebook. This trend has led to the proliferation of
ghost spaces in data centers: unused, and unusable, space [6].

To help improve data center efficiency, over-subscription
of data center power has been proposed in recent years [1],
[6], [7]. With over-subscription, the planned peak data center
power demand is intentionally allowed to surpass data center
power supply, under the assumption that correlated spikes
in server power consumption are infrequent. However, this
exposes data centers to the risk of tripping power breakers
due to highly unpredictable power spikes (e.g., a natural
disaster or a special event that causes a surge in user activity
for a service). To make matters worse, a power failure in
one data center could cause a redistribution of load to other
data centers, tripping their power breakers and leading to a
cascading power failure event.

Therefore, in order to achieve both power safety and
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Figure 1. The measured power consumption (in watts) as a
function of server CPU utilization for two generations of web
servers used at Facebook. The ? data points were measured from
a 24-core Westmere-based web server (24×L5639@2.13GHz,
12GB RAM, 2×1G NIC) from 2011, while the • data points were
measured from a 48-core Haswell-based web server (48×E5-
2678v3@2.50GHz, 32GB RAM, 1×10G NIC) from 2015. Both
servers were running a real web server workload. We varied the
server processor utilization by changing the rate of requests sent
to the server. Note that the 2015 server power was measured
using an on-board power sensor while the 2011 server power
was measured using a Yokogawa power meter.



improved power utilization with over-subscription, power
capping, or peak power management techniques, have been
proposed [4], [8]. These techniques (1) continually monitor
server power consumption and (2) use processor and memory
dynamic voltage and frequency scaling (DVFS) to suppress
server power consumption if it approaches its power or ther-
mal limit.

Most prior work focused on server-level [8], [9], [10] or
ensemble-level [4] power management. They typically used
hardware P-states [11] or DVFS to control peak power
or thermal characteristics for individual or small groups of
servers, with control actions decided locally in isolation.
There have been fewer studies on data center-wide power
management to monitor all levels of the power hierarchy and
make coordinated control decisions. Some recent work [12],
[13] looked into the problem of data center-wide power man-
agement and the issues of coordination across different levels
of controllers. However, their proposed techniques and design
were limited because of the simplified system setup in their
simulation-based studies, which were based on either pure
simulation or a small test-bed of fewer than 10 servers. These
prior works did not address many key issues for data center-
wide power management in a real production environment
with tens or hundreds of thousands of servers.

In this paper, we describe Dynamo – a data center-wide
power management system that monitors the entire power
hierarchy and makes coordinated control decisions to safely
and efficiently use provisioned data center power. Our key
insight is that in real-world data centers, different power
and performance constraints at different levels in the power
hierarchy necessitate coordinated, data center-wide power
management. We make three main contributions:

1. To understand the design space of Dynamo, we provide
a characterization of power variation in data centers running
a diverse set of modern workloads. Using fine-grained power
samples from tens of thousands servers for over six months,
we quantify the power variation patterns across different
levels of aggregation (from Rack to MSB) and across different
time scales (from a few seconds to tens of minutes). Based on
these results, as well as our study of power breaker charac-
teristics, we find that to prevent real-world power failures, the
controller power reading cycle should be fast – on the order
of a few seconds – as opposed to minutes as suggested by
previous work.

2. We describe the design of a data center-wide power
management system in a real production environment. Our
design addresses several key issues not dealt with by previous
simulation-based studies, such as (1) scalable communica-
tion between controller and controllee, (2) application- and
service-aware capping actions, and (3) coordination of mul-
tiple controller instances with heterogeneous workload and
data dependence.

3. We deploy and evaluate Dynamo in large scale data
centers serving billions of users. We report a rich set of results
from real-life power capping events during critical power
limiting scenarios. We also describe real use cases where
Dynamo enables optimizations (such as Turbo Boost and ag-
gressive power over-subscription) leading to performance and
capacity improvements. For example, Dynamo can improve
the performance of a production Hadoop cluster by up to
13% and has enabled us to accommodate 8% more servers
under the same power constraints via more aggressive power

budgeting in an existing data center.
Dynamo has been deployed across all of Facebook’s data

centers for the past three years. In the rest of this paper, we
describe its design and share how it has enabled us to greatly
improve our data center power utilization.

II. BACKGROUND

In this section we describe what data center power delivery
infrastructure is, what it means to oversubscribe its power,
and under what conditions such oversubscription can cause
power outages. We also discuss the implications these factors
have on the design of a data center-wide power management
system.

A. Data Center Power Delivery
Figure 2 shows the power delivery hierarchy in a typical

Facebook data center, based on Open Compute Project (OCP)
specifications [14]. The local power utility supplies the data
center with 30 MW of power. An on-site power sub-station
feeds the utility power to the Main Switch Boards (MSBs).
Each MSB is rated at 2.5 MW for IT equipment power and
has a standby generator that provides power in the event of a
utility outage.

A data center typically spans four rooms, called suites,
where racks of servers are arranged in rows. Up to four MSBs
provide power to each suite. In turn, each MSB supplies up to
four 1.25 MW Switch Boards (SBs). From each SB, power is
fed to the 190 KW Reactive Power Panels (RPPs) stationed at
the end of each row of racks.

Each RPP supplies power to (1) the racks in its row and
(2) a set of Direct Current Uninterruptible Power Supplies
(DCUPS). Each DCUPS provides 90 s of power backup to six
racks. The rack power shelf is rated at 12.6 KW. Depending
on the server specifications, there can be anywhere between 9
and 42 servers per rack1.

1Here we describe the typical Facebook-owned data center based on
OCP specifications [14]; Facebook also leases data centers where the
power delivery hierarchy matches more traditional ones described in
literature [1]. The traditional model uses Power Distribution Units (PDUs)
and PDU Breakers in place of SBs and RPPs.
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Figure 2. Typical Facebook data center power delivery infras-
tructure [14].
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Figure 3. Power breaker trip time as a function of power usage.
The dots represent raw data based on manufacturer testing for
different power breakers used at Facebook. The lines show the
lower-bound on trip time per device type.

Notice that power is oversubscribed at each level: a power
device supplies less power than its children draw at peak.
For example, an MSB supplies 2.5 MW to up to four SBs
that draw 4 × 1.25 = 5 MW at peak. Each power device
is equipped with a circuit breaker that trips if the device’s
power draw exceeds the breaker’s rated power. But breakers
do not trip instantly. We measured the amount of time it
took to trip the breakers at each level of our power delivery
hierarchy under different amounts of power overdraw, shown
in Figure 3 (note the figure’s logarithmic y-axis). Our results
corroborate measurements reported in prior literature [7].

We find that a breaker trips when both (1) the current
through the breaker exceeds the breaker’s rated current and
(2) the breaker sustains the overdrawn power for a period
of time inversely proportional to the overdraw amount. In
other words, though circuit breakers trip quickly under large
power spikes, they sustain low amounts of overdrawn power
for long periods of time. For example, RPPs and Racks
sustain a 10% power overdraw for around 17 minutes. In
addition, as Figure 3 shows, lower-level devices in the power
delivery hierarchy sustain relatively more power overdraw
than higher-level devices. For example an RPP sustains a 40%
power overdraw for around 60 s while an MSB sustains only
a 15% power overdraw for the same period of time.

Because power oversubscription occurs at every level of the
power delivery hierarchy, it is insufficient for power capping
techniques to monitor any single device or subset of devices
in a data center. Instead, techniques must take a holistic
approach, coordinating action across all devices in the power
delivery hierarchy. In addition, because some slack exists in
how long it takes circuit breakers to trip, opportunities exist
for minimizing the impact of server performance while still
ensuring power safety. These observations inform the design
of Dynamo that we discuss in Section III.

B. Power Variation Characterization

In Section II-A, we observed that power breaker trip time
varies as a function of power overdraw. A key design con-
sideration for power capping techniques, then, is how fast to
respond to power overdraw in order to guarantee protection
from tripping circuit breakers. To do this, we must answer
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Figure 4. An illustration of calculated power variation for a time
window. The maximum power variation is the difference between
the maximum and minimum power values in the time window.
Here, v1 and v2 are the maximum power variations for time
windows 1 and 2, respectively.

the question, how quickly does power draw change in a real-
world production data center?

Since we can not safely overload the power delivery hier-
archy in our data centers, we instead measure and extrapolate
power variation to power-oversubscribed scenarios. We next
present a large-scale study characterizing the power variations
of servers at Facebook. We collected fine-grained power
values (every 3 seconds) for every server in one data center
suite (roughly 30 K servers) for over six months. We also
examine coarser-grained power values (every 1 minute) for
all servers in all our data centers (on the order of hundreds of
thousands) for nearly 3 years.

To quantify power variation, we define the power slope,
which measures the rate at which power can increase in a
specific time window (from 3 seconds to 600 seconds) for
different levels of the power hierarchy (Figure 2). Figure 4
illustrates how the metrics are calculated. For each time
window, we calculate the worst-case power variation as the
difference of the maximum and minimum power values in
that time window.

We analyze the fine-grained power data for each level
of the power hierarchy (rack, RPP, SB, and MSB) over six
months. To simplify the analysis, we partition the data into
pieces, study data from two-week time periods, and combine
results from multiple time periods. Figure 5 shows the
summarized results on power variations and allows us to make
the following two observations. First, larger time windows
have generally larger power variations. Second, the higher
the power hierarchy level, the smaller the relative power
variation, due to load multiplexing. For example, at the rack
level, the worst-case power variations range from 10% to
50% for different time windows, while at the MSB level, the
worst-case power variations range from 1% to 6% for the
same time window.

A third observation is that power variations also depend on
the application. We randomly selected a group of servers from
several services at Facebook (web server, cache, MySQL
database, news feed, hadoop, and f4/photo storage [15]; with
30 servers per service) and conducted a similar analysis (for
one specific time window of 60 s). Figure 6 summarizes
the results. We see that different applications have different
power variation characteristics. For example, servers running
f4/photo storage have the lowest median (50th percentile,
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Figure 5. The measured power variations over different time windows for power devices at the racks, RPPs, SBs, and MSBs. The
x-axis is the power variation normalized to the average power during peak hours. The y-axis is the cumulative distribution function.
Lines of different colors represent different time windows (from 3 s to 600 s). For convenience, we also list the 99th percentile (p99)
power variation values for each case.
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Figure 6. The measured power variations for several services in
Facebook at the server level. The default time window is 60 s.
For convenience, we also show the median (50th percentile, or
p50) and p99 power variation values for each case.

or p50) variations but the highest p99 variations among all
services we have studied.

C. Design Implications

Combining the observations from Sections II-A and II-B,
we derive the following design implications for a data center-
wide power management system.

Sub-minute power sampling. Such a system needs to
sample power at a sub-minute interval. Figure 5 shows that
3% (at MSB level) to 30% (at rack level) power demand
increases have been observed within a 60 s interval. Such
swings in power demand are large enough to trip a breaker
within a few minutes according to Figure 3.

2-minute power capping time. Such a system also needs
to react to power demand spikes in no more than 2 minutes
(and potentially much less to guarantee safety). Figure 3
shows that breakers trip for a ∼5% MSB power overdraw
in as little as 2-minutes. Within this 2-minute interval a
power management system must issue appropriate capping
commands and ensure that power settles.

We next discuss Dynamo, our data center-wide power
management system. We design Dynamo to sample data at
the granularity of a few seconds and conservatively target 10 s
of time for control actions and power settling time. This is an

important distinction from prior work that sampled power at
a coarser granularity of several minutes [1].

III. DYNAMO ARCHITECTURE

This section describes the design of Dynamo. We start with
an overview and then describe in detail the components that
Dynamo comprises: the agent, the leaf power controller, and
the higher-level power controllers.

A. Overview of Dynamo’s Design

As mentioned in Section I, our goal is to design a data
center-wide power management system that monitors the
entire power hierarchy. For a practical system to be deployed
to tens or hundreds of thousands of servers, it needs to be
(1) efficient and reliable and (2) scalable to handle a power
hierarchy of extremely large size.

At a high level, Dynamo has two major components:
Dynamo agent. The agent is a light-weight program de-

ployed to every server in the data center. It reads power,
executes power capping/uncapping commands, and commu-
nicates with the controllers (discussed next). Since a Dynamo
agent needs to run on every server, it is designed to be as
simple as possible. We place most of the intelligence of the
system in the controller. As a result, Dynamo agents do not
communicate with one another and only communicate with
Dynamo controllers.

Dynamo controllers. The controllers run on a group of
dedicated servers, monitor data from the Dynamo agents un-
der their control, and are responsible for protecting data center
power devices. We take a distributed approach in the design
of the Dynamo controllers. For every physical power device
in the hierarchy that needs protection there is a matching
controller instance monitoring and controlling (directly or
indirectly) the set of downstream servers for that device. In
this way, there is a hierarchy of Dynamo controllers that
mirrors the topology of the data center’s power hierarchy.
Multiple levels of controllers coordinate to ensure the safety
of the entire power hierarchy.

Figure 7 illustrates how Dynamo’s major components in-
teract with each other. Each power device at the lowest level
is assigned a leaf power controller. The leaf power controller
communicates directly with Dynamo agents on all down-
stream servers of that power device. We use the Thrift [16]
remote procedure call (RPC) service for efficient and reliable



Figure 7. An illustration of how Dynamo’s major components
interact with each other. Dynamo has two major components: the
agent, which runs on every server at Facebook; and the controller,
which monitors the power of each device in the power delivery
hierarchy.

communication between controllers and agents. At each sam-
pling interval a leaf controller reads and aggregates power for
all downstream servers and compares the aggregated power
to the device’s power limit. The decision logic (which we
describe in Section III-C2) then decides whether capping or
uncapping is needed. In the case of capping, the leaf controller
will also try to optimize the capping actions to minimize the
overall performance impact caused by power capping.

Similarly, each power device at a non-leaf level is assigned
an upper-level power controller. The upper-level controller
indirectly monitors and controls its downstream servers by
communicating with leaf controllers or other downstream
upper-level controllers. Controller communication ensures
that controller decisions converge and upper-level power de-
vices are protected, and can be through Thrift if the controller
instances are fully distributed or through shared memory if
the controllers are running on the same server.

Next, we will describe each of the major components of
Dynamo in detail.

B. Agent Design
Dynamo agent is a light-weight program running on every

server in a data center. Figure 8 shows the overall structure
and work flow for Dynamo agent. At a high level, Dynamo
agent functions like a request handler daemon. It continuously
listens for requests sent remotely from the leaf controller. We
choose the Thrift RPC service as the main communication
protocol for two reasons: first, it is an efficient RPC mech-
anism that allows decisions to propagate quickly from the
leaf controller to the agents; and second, it is highly scalable
and has been proven to handle communication among many
thousands servers [16].

There are two basic types of requests a Dynamo agent
handles:

Request'Handler'
(thri1'server)''

Requests'from'
leaf'controllers''

Power'read'

Has'Sensor?'
yes'no'

Reading'power'
from'sensor'

Es@ma@ng'power'
from'cpu_u@l'etc'

Power'cap/uncap'

RAPL''
Module/API'

Set/Unset''
Power'limit'

Figure 8. A block diagram for Dynamo agent showing the overall
structure and workflow.

Power read. The agent reads and returns the current power
consumption of the host server. If possible, it also returns the
breakdown of the power (such as fan power, socket power,
AC-DC power loss, etc.). Nearly all new servers (2011 or
newer) at Facebook are equipped with an on-board power
sensor, which provides accurate power readings. Internally,
the agent talks to the sensor firmware to get the power reading
and breakdowns. For a small group of servers without power
sensors, we build a power estimation model similar to [17]
by measuring server power with respect to CPU utilization
with a Yokogawa power meter [18]. Once a server’s power
model is built, the agent estimates its power on-the-fly using
system statistics such as CPU utilization, memory traffic, and
network traffic.

Power capping/uncapping. The agent sets or unsets the
power limit for the host server based on capping or uncapping
requests sent from the leaf controller. It also returns the
status of the operation to the leaf controller to let it know
whether the operation was executed successfully. Internally,
agents communicate with the Intel running average power
limiting (RAPL) module to implement setting or unsetting
the power limit. RAPL is a single-server level power control
mechanism to enforce total system power budgeting [19],
[20]. Communicating with RAPL is platform-specific – we
either update a machine status register (MSR) directly or,
when available, call the API provided by the on-board node
manager through IPMI [19], [21].

To evaluate the effectiveness of the agent’s operation, we
examined how long it takes for the agent to cap or uncap
power to a target level for a single server. As shown in
Figure 9, we found that once a RAPL capping/uncapping
command is issued, it takes about two seconds for it to take
effect on the target server and stabilize. This result implies
that the controller, which reads power from the agent, must
sample at larger than a two-second granularity in order to get
stable power readings and aggregations.

C. Leaf Power Controller Design

In this section, we discuss the most basic controller type
– the leaf power controller, which communicates with the
agents under the corresponding power device. Its function-
ality consists of three parts: (1) power reading and aggrega-
tion, (2) monitoring and making capping decisions, and (3)
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Figure 9. The measured single-server power capping and uncap-
ping test results using Dynamo agent and RAPL.

choosing the optimal set of servers to cap in order to minimize
performance impact. We discuss each of these in turn next.

1) Power Reading and Aggregation: The leaf power
controller talks to agents to get periodic power consumption
data for all servers under the power device. It aggregates the
power readings to calculate the total power consumption for
the servers connected to the power device.

Specifically, a leaf power controller periodically broad-
casts power pull requests over Thrift to all servers under its
purview. Recall from Section II-B that we require a sub-
minute power sampling interval (and faster sampling leads
to potentially better control actions). On the other hand, we
saw in Section III-B that the sampling period needs to be
greater than 2 seconds in order to get stable power readings.
We therefore pick 3 seconds as the pulling cycle for the leaf
power controller to get both stable readings and fast reaction
times.

Some power breakers provide power readings directly, so
why aggregate power readings from servers instead of just
using the breaker readings? There are two main reasons for
our design choice. First, even when a breaker provides power
readings, the sampling frequency is usually not fast enough
for our use case. For example, for power breakers used at
Facebook, the available sampling frequency is on the order
of minutes and there is no easy way to get finer-grained
power samples. Second, we need to know individual server
power consumption in order to figure out the best power
capping decisions for each server and send out power capping
commands to the right servers (we describe specifically our
policy in Section III-C3). Therefore, for Dynamo, we use the
power breaker readings only for validating that the aggregated
power from servers is correct.

A leaf power controller typically pulls power from a few
hundred servers or more. It may happen that power pulling
fails or times out for some servers. To handle this, the leaf
power controller uses additional information (server type,
server status, application type, etc.) about the group of servers
and attempts to estimate the power reading for the failed
servers using power readings from neighboring servers run-
ning similar workloads. Further, in the rare case that more
than 20% of the servers in the group have power reading
failures, the leaf power controller will treat the power aggre-
gation as invalid and send an alert for human intervention.
Finally, for non-server components (such as the top-of-rack
switch) drawing power from the same breaker, the leaf power
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capping'target'

Time'
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Figure 10. An illustration of the three-band power capping and
uncapping algorithm.

controller will try to pull power directly from the component
if available, and use an estimate if not.

2) Power Capping Decisions: Once the leaf power con-
troller aggregates power readings from servers to calculate the
total power consumption for a power device, it compares it to
the limit of the power breaker (see Section III-D for details on
computing the power breaker limit).

The leaf power controller uses a three-band algorithm to
make capping or uncapping decisions, shown in Figure 10.
There is a capping threshold (the top band), which is typi-
cally 99% of the limit of the breaker. When the aggregated
power exceeds the capping threshold, power capping logic
attempts to bring down the power consumption to the level
of the capping target (the middle band). The capping target
is conservatively chosen to be 5% below the breaker limit
for safety (similar to the conservative single-step actuation
in [22]). To avoid oscillations, there is also a lower uncapping
threshold (the bottom band) such that power uncapping will
be triggered only if the aggregated power falls below it.

In practice, the three-band algorithm efficiently eliminates
control oscillations while making the capping response time
fast enough to handle sudden power surges in our data centers.
The algorithm is also flexible – we can configure the capping
and uncapping thresholds on a per-controller basis enabling
customizable trade-offs between power-efficiency and perfor-
mance at different levels of the power delivery hierarchy.

3) Performance-Aware Power Capping: Though we pri-
oritize safety and treat power capping as an emergency action,
we still want to reduce its effect on application performance
as much as possible. Therefore, a key function of the leaf
power controller is to choose the right set of servers to cap
(and their capping targets) to reduce performance impact. The
leaf power controller uses meta-data about all the servers
it controls, in conjunction with their power consumption
history, to choose appropriate capping actions.

We start by categorizing Facebook services into a prede-
fined set of priority groups, where higher priority corresponds
potentially higher performance impact due to power capping.
For example, cache servers [23] belongs to a higher priority
group than web servers or news feed servers because a small
number of cache servers may affect a large number of users
and have more direct impact on end-to-end performance.
Each priority group has its own service-level agreement (SLA)
in terms of the lowest allowable power cap.

When a leaf power controller needs to cap power, it first
calculates the total-power-cut: the difference between the
current aggregated power and the capping target (shown in



Figure 10). Then, it tries to distribute the total-power-cut to its
servers from services belonging to the lowest priority group
first. If capping the servers in the lowest priority group does
not absorb all of the total-power-cut, the leaf power controller
picks servers from services belonging to the second-lowest
priority group, and so on.

Within servers from services belonging to the same priority
group, the leaf power controller uses a high-bucket-first algo-
rithm to decide exactly how much of a power cut each server
should take. Analogous to tax brackets, it first groups servers
into different buckets based on their current power consump-
tion and then distributes the total-power-cut among servers
in the highest bucket first. The rationale is to punish first
servers consuming more power (likely caused by application
regressions, unexpected software behavior consuming system
resources, etc.). If the highest bucket is not enough to fulfill
the power cut, it will then expand to include servers in the
next bucket, and so on, until either the total-power-cut can be
satisfied or it hits the SLA lower bound (i.e., the lowest power
cap allowed for the current priority group). Within the bucket,
all servers will get an even amount of power cut. Based on our
experience, we find a bucket size between 10 and 30 W works
well for most servers. In our current configuration a bucket
size of 20 W is used.

Once the leaf power controller calculates the allocated
power-cut for each server (which, in total, adds up to the total-
power-cut), it then computes the power cap for each server as
its current power value less its power-cut. For example, if a
server is currently consuming 250 W and its allocated power-
cut is 30 W, its power cap will be set to 220 W. Finally, the
leaf power controller sends capping requests, along with these
capping targets, to all affected servers.

D. Upper-Level Power Controller Design/Coordination

As mentioned in Section III-A, a hierarchy of Dynamo
controllers exists, mirroring the power delivery hierarchy. For
every power device that needs to be protected, there is a
controller instance responsible for monitoring and protecting
the device. In theory, the controllers can be fully distributed
with each controller instance being an independent binary
and communication between instances occurring via Thrift.
However, since most controllers are relatively lightweight, it
is also possible to consolidate them to reduce their resource
footprint.

We have described the most basic type of Dynamo con-
troller – the leaf power controller. The rest of this section
will focus on upper-level power controllers. The upper-level
power controller shares the same functions as the leaf con-
troller in term of:

Power reading and aggregation. The upper-level power
controller periodically pulls power readings. The difference
is that these readings are pulled from downstream controllers,
rather than directly from servers. To ensure control stability,
the pulling cycle for the upper-level controller is longer than
the settling time of the downstream leaf controller [24]. In
our implementation, the upper-level power controller uses a
pulling cycle of 9 seconds, which is 3× the pulling cycle of
the leaf power controller.

Capping and uncapping decisions. Once the upper-level
power controller gets the aggregated total power, the capping
decision logic uses the same three-band algorithm shown in
Figure 10 to decide when to cap or uncap.

An important concern is that, since both the leaf power con-
troller and the upper-level power controller have independent
capping/uncapping logic, they must coordinate to make sure
their capping actions will not conflict or negatively interact
with each other.

We use a punish-offender-first algorithm to coordinate and
choose the right actions for the upper-level power controller.
The basic idea is that, when an upper-level power controller
exceeds its power limit and triggers capping, it inspects its
children controllers and punishes the offenders first. Here the
offender is defined based on the power quota (planned peak
power consumption) for a device. To illustrate the punish-
offender-first algorithm, let us assume a parent device P1 has
two children devices C1 and C2 with
P1 : physical power limit = 300 KW
C1 : physical power limit = 200 KW, power quota = 150 KW
C2 : physical power limit = 200 KW, power quota = 150 KW

Notice that the children may individually consume as much
as 200 KW so long as their combined power usage is below
300 KW. However, when this is violated, say

C1 : power usage = 190 KW
C2 : power usage = 130 KW,

the upper-level controller for P1 will see a power usage of
320 KW exceeding its limit of 300 KW. It will then use the
punish-offender-first algorithm to distribute the needed power
cut (20 KW for this example) among its children controllers.
For this example, C1 is the offender as its current power
usage is above its power quota. The needed 20 KW power
cut will be given to C1. To do so, the upper-level controller
for P1 will send a contractual power limit of 170 KW to the
controller for C1. And we get

C1 : physical power limit = 200 KW
contractual power limit = 170 KW.

The controller for C1 will use the minimum of the physical
and contractual limits to make capping decisions. Assuming
it is a leaf controller, it will find the optimal set of servers to
cap as described in Section III-C3. After the capping action
propagates to the downstream servers, we expect C1 in the
next control cycle to satisfy

C1 : power usage ≤ 170 KW.
In case the controller for C1 is an upper-level controller,

it will then recursively propagate its decisions to downstream
controllers via more contractual power limits.

Note that if P1 had to choose among multiple offenders,
it would distribute the power cut among all downstream
offenders using a high-bucket-first algorithm as described in
Section III-C3. Finally, each controller chooses the minimum
of the its individual capping decision and that propagated
from its parent controller.

E. Dynamo Design Discussion

We conclude this section by discussing several additional
issues related to Dynamo’s design.

Fault tolerance. Since Dynamo manages the power safety
of our data centers, we designed it to be fault tolerant and
resilient against agent and controller failures. First, a script
periodically checks the health of an agent and restarts the
agents in case the agent crashes. This occurs in addition
to other generic auto-remediation systems at Facebook that
handle hardware failures and job rescheduling. Second, as



discussed in III-C1, a controller can tolerate a certain thresh-
old of power pulling failures (using estimated power based on
server meta-data). If the number of power pulling failures ex-
ceeds a threshold, a controller will avoid taking false positive
actions. It will instead send an alarm for a human operator
to intervene. In case a controller crashes, we use a redundant
backup controller that resides in a different location and can
take control as soon as the primary controller fails.

Networking hardware. Besides servers, there are also
network devices in our data centers. Network devices con-
sume relatively small amounts of power in Facebook data
centers, usually a low single digit percentage as compared to
servers. Currently, Dynamo monitors – but does not control
– the power consumption of network devices. This is because
the network hardware in our data centers does not yet sup-
port RAPL-like power capping. Our current approach is to
treat those network devices separately (and budget power for
them accordingly). However, in case future network devices
support capping, Dynamo can be easily extended to control
network devices as well.

Algorithm selection. Our primary objective was to de-
velop a reliable power management system at scale. We
made the decision to use a simple three-band algorithm
(Section III-C2) to help us quickly iterate on the design
process and easily identify issues when testing in production.
In the future, we may explore more complex power capping
algorithms.

IV. RESULTS: DYNAMO IN ACTION

Dynamo was developed at Facebook and gradually de-
ployed to all of its production data centers over the past three
years. For the particular setup used at Facebook, we configure
RPPs or PDU Breakers (depending on the data center type)
as the leaf controllers and skip rack-level power monitoring2.
As a result, the implementation and deployment of Dynamo
has been simplified as the number of leaf controllers has
been reduced (from one per rack to one per RPP or PDU
Breaker), even though the leaf controller now needs to handle
a larger group of servers (between a few hundred to a thou-
sand). To optimize for performance in our implementation, all
controller instances for neighboring devices in a data center
suite are consolidated into one binary with each controller
instance being a thread (there are around 100 threads in total).
Different controller binaries run on separate and dedicated
Dynamo servers to avoid a single point of failure.

In the rest of this section, we present results to display
Dynamo operations in production.

A. Power Capping
Figure 11 shows a power capping event that happened at

the leaf controller level in one front-end cluster located in
Ashburn, Virginia. The leaf controller was protecting a PDU
Breaker (rated at 127.5 KW) powering several hundred front-
end web servers. From 8:00 AM to 10:30 AM, the total power
of these servers increased steadily as a result of normal daily
traffic increase at Facebook. Around 10:40 AM, however, a
production load test was started with more user traffic shifting
to this cluster. Notice that the load testing drove the power

2It is simply a Facebook infrastructure reality that under the current
30 MW data center design and the building space available, the available
rack power is always over-provisioned and the rack is not a power delivery
bottleneck. Dynamo will, however, work equally well regardless how rack
power is configured.
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Figure 11. Power measurement showing power capping and
uncapping for a row of servers in one front-end cluster located
in Ashburn, Virginia.

consumption of the PDU Breaker to rapidly approach its
capping threshold of 127 KW, and finally exceed it around
11:15 AM. As a result, power capping was triggered. The
leaf power controller successfully throttled power to a safe
level within about 6 s, and then held it at a level slightly
below the capping target of 126 KW until 11:45 AM, when
the production load testing finished and the traffic to this
cluster started to return to normal. Around 12:00 PM the total
power dropped below the leaf power controller’s uncapping
threshold, which triggered power uncapping.

Figure 12 shows another power capping instance – one that
prevented a potentially severe power outage. This instance
began with an unplanned site outage, which affected several
Facebook data centers. Operational issues during the recovery
process resulted in one of the data centers in Altoona, Iowa
receiving significantly higher-than-normal traffic, further ex-
acerbated by many servers starting up simultaneously during
the recovery. The result was a dramatic power surge in that
data center. In particular, the power consumption of one SB
rose to 1.3× its normal daily peak, approaching its physical
breaker limit. The upper-level power controller guarding this
SB kicked in and capped three offender rows to avoid trip-
ping the SB power breaker. (Note that, during a vulnerable
time of recovery, another SB-level power outage could have
significantly worsened the situation or even caused cascading
failures.)

Figure 12 shows the detailed sequence of events. The
unplanned outage started around 12:00 PM, and caused a
sharp power drop in the SB over the next ten minutes. This
was followed by a couple of unsuccessful partial recovery
attempts, which caused the power to oscillate over the next
30 minutes or so. Then, around 12:48 PM, the recovery was
successful and a large amount of traffic started to flow in,
which caused a large power surge. Shortly after 12:48 PM, the
SB-level Dynamo controller kicked in, capped three offender
rows, and held the power steadily below the limit. This lasted
for another 20 minutes until the power dropped to a safe
level, whereupon Dynamo started to uncap. We see that after
uncapping, the power actually bounced back a bit but was still
below the limit. Finally, around 1:35 PM, more traffic was
shifted to other data centers and the load to this data center
returned to normal around 2:00 PM.

An important question is how does power capping affect
performance or latency? For the above power capping events
on front-end clusters, the observed performance degradation
was negligible. This is because both events only affected
a small subset of servers in certain rows and request load
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Figure 12. A real-world case study of how Dynamo prevented a potential power outage. A power surge occurred during recovery
from an unplanned site issue and led one SB in Facebook’s Altoona, Iowa data center to exceed its power limit. An upper-level power
controller kicked in around 12:48 PM and three offender rows/RPPs got capped. The upper graph is the power consumption of the
SB, while the lower graph is the power consumption for the three rows/RPPs.
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Figure 13. Web server performance slowdown at different power
capping levels normalized to uncapped web servers. The y-axis
is the relative performance slowdown as measured by server-side
latency. The x-axis is the relative power reduction level caused
by power capping.

balancing responded by sending less traffic to those servers
to improve their response time during capping. To mimic
a more extreme scenario where the whole cluster would be
affected, we conducted an experiment with a small control
group of six web servers. Power capping was applied to one
group of three servers with different capping levels, while we
compare their performance (server-side latency) to the other
group of three servers. The results are shown in Figure 13. We
see the performance decreases slowly within the 20% power
reduction range. However when power capping is beyond
20%, the performance decreases faster, which may indicate
that CPU frequency becomes a bottleneck.

B. Dynamic Power Oversubscription

The above two examples demonstrated how Dynamo
can provide automatic protection against unexpected power
surges. Next, we show an example of how Dynamo enables
performance boosting via aggressive dynamic power oversub-
scription for a large production Hadoop cluster at Facebook.

This Hadoop cluster is located in Facebook’s Prineville,
Oregon data center, and spans several thousand servers.
Performance tests conducted on these servers showed that
turning on hardware over-clocking (Turbo Boost [25]) could
improve their performance by around 13% while also increas-
ing their power consumption by about 20%. Power planning
for this cluster did not account for Turbo Boost3, so there was
no planned power margin for enabling Turbo Boost in this
cluster.

In the absence of Dynamo, this would mean that we could
not safely enable Turbo Boost for this Hadoop cluster, since
worst-case peak power would exceed the power limit (even
though average-case power would likely lie within the limit
due to multiplexing [1]). However, with the power safety net
the Dyanamo provides, we can oversubscribe power safely,
enabling us to turn on Turbo Boost for all servers in the
Hadoop cluster. This is a good example of dynamic power
oversubscription – the servers were able to take advantage of
overclocking whenever there happened to be power margin
available.

Figure 14 shows the power consumption of one of the SBs
connecting to this Hadoop cluster over a 24-hour period. It
also shows the number of servers being capped during the
same time period. We see that with Turbo Boost enabled for
all servers, the SB power consumption stayed close to – but
below – its 1250 KW power limit. Within 24 hours, power
capping was triggered seven times, with each time lasting
from 10 minutes to 2 hours, and each time throttling 600 to
900 servers slightly. Note for this case, unlike the previous
two examples, the power capping was intentional, and is a
trade-off made to improve performance by 13%.

C. Workload-Aware Power Capping
Next, we take a closer look at how Dynamo sets the power

cap for servers running different services. We pick a leaf

3This was due to two reasons. First, a Hadoop cluster needs a large
enough memory and storage footprint to operate on large data sets. This
sometimes forces a lower power budget in order to squeeze in more
servers into a cluster. Second, when this cluster was planned, CPU was not
a major bottleneck for Facebook workloads and it was not clear whether
Turbo Boost would help at that time.
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Figure 14. An example showing Dynamo-enabled performance
boosting in a production Hadoop cluster in our Prineville, Oregon
data center. The top line is the SB power consumption with Turbo
Boost enabled for Hadoop servers. The bottom line is the number
of servers being capped by Dynamo. The data spans 24 hours.

controller covering a row (RPP) of servers running a mix of
services. There are around 200 front-end web servers, 200
cache servers [23], and 40 news feed servers. As discussed
in Section III-C3, the leaf controller decides on optimal
capping actions using priority groups. In our case, cache
servers belong to a higher priority group than web and feed
servers. For our experiment, we manually trigger the power
capping by lowering the capping threshold during the test.
Figure 15 shows the results of this experiment. The upper
graph shows total row power, while the lower graph shows
power breakdown by service. We see that power capping was
effective between 1:50 PM and 2:02 PM. Notice that, while
web servers and news feed servers were capped, cache servers
were left uncapped.

To further examine the power cap settings within a priority
group, we show a snapshot of the current power consumption
and computed power cap value for each server in Figure 16.
Recall from Section III-C3 that Dynamo uses a high-bucket-
first algorithm to distribute the power cut among servers
within the same priority group. For this case, the bucket is
chosen to be [210 W, 300 W]. As a result, Figure 16 shows
that the total-power-cut has been distributed among all web
servers or feed servers whose current power consumption is
210 W or more. As expected, no cache servers were capped
as they belong to a higher priority group. In the figure, the ♦
points are server power and the � points are the power cap
values (which are computed as the current power value less
the calculated power cut). The algorithm also ensures that the
power cap value is at least 210 W for this case.

D. Summary of Benefits
We end this section with a summary of Dynamo’s benefits,

as shown in Table I. Specifically:
Dynamo has prevented 18 potential power outages in the

past 6 months due to unexpected power surges, similar to
the case study described in Section IV-A. This happened at
various levels, including RPP, PDU Breaker, and SB.

Dynamo enables us to aggressively boost performance
for services via Turbo over-clocking in legacy clusters with
low power budgeting. Section IV-B has already shown a
Hadoop case with execution time reduced by 13% for CPU-
intensive Hadoop tasks. Here we explain another example
for a production search cluster at Facebook. For this search
cluster, in order to accommodate more servers to get the
needed memory or storage footprint to operate on large data
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Figure 16. A snapshot of the current power consumption and
the computed power cap value for each server in three service
groups (web, cache, or news feed). Each ♦ point is the power
consumption for a server, while each � point is the computed
power cap value for that server. The x-axis is the server index
sorted by the current power consumption.

sets, all servers in this cluster were required to limit their
clock frequency to make sure the worst-case application peak
power is within the limited power budget. This adversely
affected search performance in terms of maximum queries
per second (QPS). With Dynamo, we were able to remove
the clock frequency constraint and reset it to the nominal
clock frequency. Further, since search is CPU-bound, we
enabled Turbo Boost over-clocking for this cluster. Though
this put the worst-case cluster power above its breaker limit
and caused Dynamo to kick-in in rare cases, the cluster was
within its power limit most of the time, and has seen up to a
40% performance improvement.

With Dynamo as a safety net, we are able to more aggres-
sively over-subscribe our existing data centers and free up
many megawatts of stranded power. As a example, we have
been able to accommodate 8% more servers for the same
power delivery limits in one of our data centers.

V. RELATED WORK

To the best of our knowledge, Dynamo is the first data
center-wide power management system in a real production



Use Case Benefits
Prevent potential power outage 18 times in past 6 months
Enable performance boost for Hadoop Boost map-reduce performance by up to 13%
Enable performance boost for Search Boost search QPS by up to 40%
Data center over-subscription Accommodate 8% more servers
Fine-grained real-time monitoring 3-second granularity power readings and break-down

Table I. A summary of the benefits provided by Dynamo.

environment to be described in the literature. Next, we sum-
marize briefly other related works (which we have qualita-
tively compared Dynamo to throughout the paper).

There is a large body of previous work on server-level or
local ensemble-level power management [4], [8], [9], [10],
[26], [27], [28], [29], [30], [31], [32], [33]. Based on their
control goals, they fall into the following groups: peak power
management approaches [4], [8], [26]; thermal management
approaches [9], [10], [27]; and average power or energy
management approaches [28], [29], [30], [32], [33]. In terms
of methodology, most of these works leverage the hardware
P-States [11] or voltage and frequency steps (i.e., DVFS) to
reach their control goals. These previous works are related
to ours in the sense that they provide the foundation for the
power control mechanism used in this paper. For example,
Dynamo agent uses RAPL to set the power cap for individual
servers, and RAPL is essentially based on DVFS and other
control means discussed in this body of previous work. What
distinguishes our work, however, is that we focus on data
center-wide peak power management, which considers the
entire power hierarchy and make coordinated control deci-
sions.

Early work on data center-wide power management such as
[34] focused on energy management which is orthogonal to
our work and focus. More recent work by [12], [13] look into
issues of data center-wide peak power management. The two
works by [12], [13] are mostly related to our work in the sense
that we have a similar focus and problem definition. However,
the above two studies are either based on pure simulation
or based on a small test-bed of less than 10 servers. Their
proposed techniques and design do not take into account
many key issues (such as power variation and breaker char-
acterization, scalable communication between controller and
controllee, workload-aware capping actions, and coordination
of multiple controller instances), which need to be considered
for the realistic setup of large scale data centers. In contrast,
we develop Dynamo in a real production environment. The
proposed techniques and design have been evaluated in very
large scale data centers serving billions of users. We also re-
port a richer set of results from a real production environment.

The work by Fan et al. at Google [1] was also in the context
of a real production environment (with a very large scale data
center setup similar to this study). However, their work was
measurement-focused, aimed at quantifying the conservatism
of nameplate-rating–based power planning. They also use
simulation to analyze the potential benefits of using DVFS
or other power capping mechanisms, but do not address the
design of a data center-wide peak power management system.

The power variation study in Section II-B of this paper
was used to understand the design space for Dynamo. One
similar work we are aware of is from [22]. The methodology
in [22] is similar ours in terms of using the CDF, power slope,
and time window. However, [22] shows only one result at a
cluster level for a fixed time window of 10 s. Our study is
more comprehensive with fine-grained power samples from
tens of thousands of servers for over six months. We provide

characterizations for different levels of aggregation (from
racks to MSBs) and at different time scales (from a few
seconds to tens of minutes). In addition, we show how the
variation was affected by the mix of services, which was not
studied in prior work.

VI. LESSONS LEARNED

Our experience with developing and running Dynamo over
the past three years has taught us a number of lessons, which
we share here.

Monitoring is as important as capping. Monitoring is
critical in uncovering and preventing power issues. Many
power problems we had in the past could have been avoided if
we had close power monitoring to catch bottlenecks early. As
a result, we have invested a lot of effort into collecting power
information (e.g., fine-grained power readings from each
server), and on building monitoring and automated alerting
tools.

Service-aware system design simplifies capping testing.
Testing power capping in production is challenging because it
has the potential to negatively affect service performance. Yet,
it is important to perform periodic end-to-end testing of Dy-
namo to ensure correctness and reliability. Our service-aware
system design has helped us to address this challenge. We
pre-select a group of non-critical services for the end-to-end
testing of all service-agnostic logic (capping and uncapping
functionality, three-band algorithm, etc.). For service-specific
logic (such as service-aware optimal control actions), we use
a dry-run mode and detailed logging to inspect the control
logic step-by-step without actually throttling the servers in
those critical services.

Design capping systems in a hardware-agnostic way.
Heterogeneity in server hardware is a reality in real large-
scale data centers. With rolling server generation life cycles,
servers of Westmere, Sandybridge, Ivybridge, Haswell as
well as Broadwell models currently coexist in Facebook data
centers. And some of these platforms have individual ways to
read/cap power. To reduce the system maintenance overhead,
Dynamo abstracts its software into two layers – platform
independent and platform-specific – and maintains the key
logic transparent to platform through careful software design
and abstraction. This also makes the system more scalable as
it is easy to add new platforms without affecting the overall
logic.

Use accurate estimation for missing power information.
In a large-scale data center, hardware failures are inevitable
and expected. In addition, there are planned events such
as server decommissions, upgrades, and so on. All these
will lead to missing server power information. We designed
Dynamo to be resilient to these failures and function accu-
rately. One method is to use system meta-data and accurate
estimation for server power reading failures. Another useful
tool is to use the (coarse-grained) power readings from the
power breaker to validate and dynamically tune the server
power estimation and aggregation. With this design, Dynamo
performs accurate capping in spite of server power reading
failures.



Keep the design simple to achieve reliability at scale.
Dynamo agents run on every server in our fleet. As such,
even a small bug can have a massive impact on the service.
Staying reliable is thus a top priority for the development and
deployment of Dynamo. We take a two-fold approach. First,
keeping the agent and control logic simple allows us to easily
identify issues when things go wrong. Second, we use a four-
phase staged roll-out for new changes to the agent or control
logic, so any serious issues will be captured in early phases
before going wide. As a fact, Dynamo has not caused any big
reliability issues in the past three years.

VII. CONCLUSIONS

Power is a scarce – and capacity-limiting – resource in
data centers. Yet it is frequently underutilized due to con-
servative power planning. To enable better power utilization,
data centers need a reliable, systemic power monitoring and
management system such as Dynamo, that can safeguard
against power outages with minimal impact on service per-
formance. We have discussed Dynamo’s design, and how
it addresses production-environment realities such as sub-
minute-granularity power variations. We then saw Dynamo
in action: its intervention has helped prevent service outages
in production, it has enabled dynamic power oversubscription
for performance boosting, and it has allowed us to pack
more servers in our data centers. Dynamo’s power monitor-
ing framework has given us fine-granularity insight into our
power usage and efficiency, and we believe that there remains
much room for improvement (e.g., new capping algorithms
or new types of emergency response actions). With Dynamo
guaranteeing power safety, we are able to experiment with
more aggressive power subscription, and continue to move
toward optimal data center power efficiency.
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