
Adrenaline: Pinpointing and Reining in Tail Queries
with Quick Voltage Boosting

Chang-Hong Hsu∗, Yunqi Zhang∗, Michael A. Laurenzano∗,
David Meisner†, Thomas F. Wenisch∗, Jason Mars∗, Lingjia Tang∗, Ronald G. Dreslinski∗

Clarity Lab
∗University of Michigan - Ann Arbor, MI

{hsuch,yunqi,mlaurenz,twenisch,profmars,lingjia,rdreslin}@umich.edu
†Facebook, Inc, Menlo Park, CA

meisner@fb.com

Abstract—Reducing the long tail of the query latency dis-
tribution in modern warehouse scale computers is critical for
improving performance and quality of service of workloads
such as Web Search and Memcached. Traditional turbo boost
increases a processor’s voltage and frequency during a coarse-
grain sliding window, boosting all queries that are processed
during that window. However, the inability of such a technique to
pinpoint tail queries for boosting limits its tail reduction benefit.

In this work, we propose Adrenaline, an approach to lever-
age finer granularity, 10’s of nanoseconds, voltage boosting to
effectively rein in the tail latency with query-level precision. Two
key insights underlie this work. First, emerging finer granularity
voltage/frequency boosting is an enabling mechanism for intelli-
gent allocation of the power budget to precisely boost only the
queries that contribute to the tail latency; and second, per-query
characteristics can be used to design indicators for proactively
pinpointing these queries, triggering boosting accordingly. Based
on these insights, Adrenaline effectively pinpoints and boosts
queries that are likely to increase the tail distribution and can
reap more benefit from the voltage/frequency boost. By evaluating
under various workload configurations, we demonstrate the
effectiveness of our methodology. We achieve up to a 2.50x tail
latency improvement for Memcached and up to a 3.03x for
Web Search over coarse-grained DVFS given a fixed boosting
power budget. When optimizing for energy reduction, Adrenaline
achieves up to a 1.81x improvement for Memcached and up to
a 1.99x for Web Search over coarse-grained DVFS.

I. INTRODUCTION

Managing high-percentile tail latency is one of the chief
performance concerns for web services in modern Warehouse
Scale Computers (WSCs) [1]; These online data intensive
(OLDI) services traverse multi-terabyte data sets for user-
facing latency-sensitive queries by dividing (“sharding”) their
datasets over thousands of servers (“leaf nodes”) acting in
concert [2]. A complete query response is formed by aggre-
gating the responses from the individual leaf nodes. However,
at hundred- to thousand-node scale, the overall latency distri-
bution to respond to the user is often dominated by a single
straggling leaf node. For example, if an individual leaf node
has only a 1-in-100 chance of exceeding a one-second response
time, when aggregating parallel requests to 100 nodes, 63%
of queries will take longer than one second [1]. Due to this
service-level sensitivity to leaf-node tail latency, optimizations

PD
F

PD
F

PD
F

Latency

Latency

Latency

No Boosting

DVFS Boosting

Adrenaline

Mean

Mean

Mean

P99

P99

P99

Fig. 1. Query latency distributions without boosting (top), with conventional
DVFS boosting (center), and with Adrenaline (bottom).

to reduce the long tail are paramount. Indeed, sacrificing mean
latency for improved tail latency is encouraged [1].

Voltage and frequency boosting techniques, such as Intel’s
Turbo Boost, enable the processor to run above its base
operating frequency and can be used to reduce computation
time and thus shorten the long tail in the latency distribu-
tion. However, existing hardware-managed control policies
are application-oblivious; they adjust frequency and voltage
based on the number of active cores [3] and are unable to
distinguish between low-latency queries and those responsible
for the long tail. During a boosting period, all queries are
processed at a higher voltage/frequency (V/f) irrespective of

their latency profile or whether they benefit from boosting.
Recently proposed workload- and latency-aware mechanisms,
such as Pegasus [4], adjust voltage/frequency to the large
diurnal variations in service load to conserve energy while
respecting a tail latency constraint. Such approaches similarly
fail to distinguish between typical and tail queries, instead
modulating performance of the entire query latency distribu-
tion to meet the tail latency constraint. Coarse-grain uniform
boosting leads to energy-inefficient tail reduction; energy is
wasted accelerating queries that are not in the tail.

Considering that the query latency for many OLDI services
is in the range of milliseconds and microseconds [2, 5], the
emerging class of fine-grain (10s of nanoseconds) voltage
boosting (i.e., quick boosting) techniques [6–10] has the poten-
tial to enable precise query-level boosting approaches. Given
an energy budget, an intelligent quick boosting strategy could
precisely pinpoint and boost queries that contribute to the tail
as well as those whose latency is more likely to benefit from
frequency/voltage boosting. Figure 1 illustrates the limitation
of prior work and our insight. The top graph illustrates a typical
heavy-tailed latency distribution of a leaf node. Coarse-grained
boosting techniques such as those mentioned above accelerate
all queries, compressing the entire latency distribution until
the 99% latency meets the target, unnecessarily accelerating
the bulk of requests near the mean. Instead, by applying fine-
grained boosting to queries that are both sensitive to frequency
and lie in the tail, our approach skews the distribution, sig-
nificantly reducing the tail latency. However, several open
questions remain to realize this approach, including:

1) Investigating whether tail queries are amenable to
frequency/voltage boosting. If tail queries in repre-
sentative OLDI workloads are not bottlenecked on
computation, V/f boosting will not be effective in
reducing their time to completion and thus would not
be able to pull in the tail.

2) Determining whether tail queries are predictable. If
the queries that push out the long tail share common
characteristics, we can use these characteristics to
develop per-query indicators to pinpoint these queries
for boosting.

3) Identifying an effective system design to pinpoint tail
queries and precisely boost them. To realize quick
pinpointed boosting of tail queries, a mechanism must
be in place to enable the identification and boosting
of likely tail queries.

In this paper, we investigate the potential of query-level
quick boosting and design Adrenaline, a technique to address
the limitations of traditional DVFS and achieve tail-sensitive
query-level voltage boosting to significantly reduce the tail
latency with high energy efficiency. Adrenaline leverages the
recently proposed Short Stop [8], a circuit design for fine
granularity voltage/frequency scaling to design the Adrenaline
Runtime Engine, a software system approach for query-level
quick boosting. The Adrenaline runtime engine effectively
identifies queries that are likely to increase the tail distribution
and can reap more benefit from the V/f boost. The runtime
engine then adjusts the V/f at a query-level accordingly.
The various indicators Adrenaline relies on include query
types (e.g., SET, GET and DEL for Memcached) and query
characteristics (e.g., number of Web Search keywords).

In addition to reducing the tail latency when needed,
Adrenaline’s fine-grain query-level V/f boosting can signif-
icantly improve energy efficiency by scaling down voltage
and frequency when tail latency is lower than the latency
target. Adrenaline achieves energy efficiency improvements
over coarse-gain V/f boosting by only lowering V/f for queries
that are less likely to increase the tail or less affected by the
V/f scaling.

This paper makes the following contributions:

• Identify Per-Query Indicators - We characterize the
query latency distributions for latency-sensitive dat-
acenter applications including Nutch Web Search
and Memcached on real systems and how the distri-
butions are impacted by the core frequency scaling.
We then identify application specific query-level indi-
cators for pinpointing queries to apply appropriate V/f
settings.

• Adrenaline: Query-level Voltage/Frequency Scaling
- We present the Adrenaline framework to achieve
query-level fine-grain V/f scaling (10s of nanosec-
onds) and design heuristics based on the query-level
indicators to scale the V/f based on per-query charac-
teristics.

• Rein in the Tail Latency - Using Adrenaline,
we demonstrate the effectiveness of applying query-
level quick boosting for tail latency reduction. We
achieve up to a 2.50x tail latency improvement for
Memcached and up to a 3.03x for Web Search
over coarse-grained DVFS given a fixed boosting
power budget.

• Improving Energy Efficiency - In addition to reining
in tail latency, we demonstrate the effectiveness of
applying Adrenaline to improve energy efficiency. We
achieve up to a 1.81x improvement for Memcached
and up to a 1.99x for Web Search over DVFS.

II. MOTIVATION AND OPPORTUNITIES

We begin by examining the query latency distributions of
two representative web services and exploring how frequency
impacts query latency. A key insight underlying Adrenaline
is that only a subset of queries need boosting to pull in the
tail latency. Two key factors determine the subset that should
be prioritized: 1) queries that fall in the tail distribution; 2)
queries that can benefit more from the boosting. To understand
how we might identify queries that exhibit these factors,
we characterize the query distributions of Web Search and
Memcached workloads on a state-of-the-art Intel Xeon server
(described in Section V).

Figure 2 presents the cumulative distributions of re-
quest latency for the three most common request types for
Memcached (SET, GET and DEL), collected at seven CPU
frequency steps ranging from 1.2 GHz to 2.4 GHz on the
Intel Xeon server. As shown in the figure, although all three
query types have long tails, the latency distributions of these
three types and how they are affected by frequency scaling
vary. SETs’ request latency is in general around 2x greater
than GETs or DELs, indicating that the SET requests may
contribute more to the tail latency, especially at low to medium

load levels. In addition, higher frequency can significantly
improve SETs’ latency. Increasing the frequency from 1.2 GHz
to 2.4 GHz improves SETs’ 90-th percentile latency from
13µs to 7µs. This indicates that to maximize the benefit of
tail reduction using voltage/frequency boosting under a power
budget, boosting SET requests should be prioritized.

In contrast to Memcached, For Web Search
(Nutch [11]) does not have multiple query types that
can be directly used to classify queries. After investigating
multiple query characteristics and the effectiveness of using
those characteristics to predict the query latency distribution
and the impact of frequency of scaling, we have identified
that the query length (the number of search key words in a
Web Search query) is a fairly effective indicator. Figure 3
presents the cumulative distributions of query latency for
three different query lengths at seven frequencies, focusing
on the tail part of the latency (beyond 85-th percentile). As
shown in the figure, short queries (queries with fewer, e.g.,
1-5, search key words) in general experience longer latency
than long queries (queries with more search terms). Whereas
it may seem counter-intuitive that adding terms reduces
query latency, Nutch returns only documents that contain all
search terms. Hence, additional terms reduce the number of
documents that must be considered in scoring. In addition,
the latency of short queries is much more improved when
we increase the frequency, compared to the medium and long
queries. For example, the 95th percentile latency of queries
with 1-5 keywords (short) is around 1100ms at 1.2GHz and
lower than 700ms at 2.2GHz. On the other hand, the queries
with 11-18 search keywords (long) are not affected by the
frequency as much. This indicates that queries with fewer
terms (short) should be prioritized for boosting to pull in the
tail.

In summary, Figures 2 and 3 demonstrate that per-query
indicators (e.g., query types and query properties) can help
pinpoint a subset of queries that contribute more to the tail
and/or more impacted by the frequency and thus need to be
prioritized to effectively pull in the tail. Based on this, we
propose query-level boosting. Figure 4 illustrates the difference
of our system, Adrenaline, compared with no boosting and
traditional coarse-grain DVFS boosting. As illustrated in the
figure, coarse-gain approaches apply V/f boosting to a sliding
window, boosting all queries within a window. Adrenaline
takes advantage of fast boosting (sub 20ns) and uses per-
query indicators to pinpoint individual queries that should be
boosted (for example, SETs as illustrated) to conduct query-
level boosting only for these queries to achieve effective tail
reduction with high energy efficiency.

III. QUICK V/F BOOSTING: AN ENABLING TECHNOLOGY

There are existing technologies that enable fast voltage
transitions. Per-Core DVFS was a technique explored by Kim
et al. [6, 7]. Per-Core DVFS integrates a voltage regulator on-
die for each core in the system, allowing individual control and
nanosecond scale voltage transition times. The Per-Core DVFS
technique comes at the expensive of on-chip inductors and
reduced regulator efficiency. Intel’s TurboBoost [12] enables
microsecond scale voltage transitions to allow, for example,

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

GET

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

SET

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

DEL

1.2GHz

1.4GHz

1.6GHz

1.8GHz

2.0GHz

2.2GHz

2.4GHz

Latency (microsecond)

C
D
F

Fig. 2. The cumulative distributions of query latency in Memcached
for GET, SET and DEL requests.

0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

400 600 800 1000 1200 1400 1600 1800 2000

0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

400 600 800 1000 1200 1400 1600 1800 2000

SHORT query string

0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

400 600 800 1000 1200 1400 1600 1800 2000

0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

400 600 800 1000 1200 1400 1600 1800 2000

MEDIUM query string

0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

400 600 800 1000 1200 1400 1600 1800 2000

0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

400 600 800 1000 1200 1400 1600 1800 2000

LONG query string

1.2GHz

1.4GHz

1.6GHz

1.8GHz

2.0GHz

2.2GHz

2.4GHz

Latency (millisecond)

C
D

F

Fig. 3. The cumulative distributions of query latency in Web Search
for queries with different numbers of search keywords.

GET

Request Stream

……

GET SET DEL GET SETGETGET…… ……

……

GETGET SET DELGET SETGETGET…… ……

(a) No Boosting

(b) DVFS Boosting

GET GET DEL GET SETGETGET…… ……

(a) Adrenaline

SET

Fig. 4. Adrenaline’s Query Level V/f scaling vs. Coarse-grain Sliding
Window based V/f scaling.

the system to exceed thermal budgets for short periods of
time. TurboBoost also includes an integrated Power Control
Unit (PCU) which makes boosting decisions in hardware
based on sensors and other hardware performance counters,
eliminating the long latencies associated with OS management.
Recently, Godycki et al. have introduced Reconfigurable Power
Distribution Networks (RPDN) [10] as a method to improve
voltage transition times with the use of a configurable on-
chip switch-cap based voltage regulator. Finally, Short Stop
[8] and Booster [9] use dual-rail voltage systems to enable
fine-grained boosting. They use off-chip voltage regulation for
better efficiency and to remove the need for on-die inductors.

For this work we evaluate Short Stop as the voltage
regulation methodology due to its short transition latency, lack
of on-die inductive elements, and better regulator efficiency.
However, the other approaches could be adapted as well to
support Adrenaline. For example, the Power Control Unit
(PCU) of Turbo Boost could be augmented to accept query
indicators to support the Adrenaline decision engine at the
expense of a longer voltage transition latency.

A. Short Stop

Short Stop [8] is a dual-Vdd system with two distribution
networks for Vdd supplied by two independent external voltage
sources, VddHigh and VddLow. In addition, there is an internal
Vboost supply to aid in the transition of a core from the low
to the high supply. Each core in the system is connected via
multiple power gating transistors (shown as a single transistor
in the diagram) to either the VddHigh, VddLow, or Vboost volt-
age rails. Decoupling capacitors (decaps) are placed between
the high supply network and the ground node to reduce ripples
on the node during transitions. In addition the Vboost supply
has a set of reconfigurable decoupling capacitors to aid in

1.8$mm

2.
16

$m
m

Control

Va
ria

bl
e$
Bo

os
t$C

ap
s

SRAM M3

PLL

Variable$Core$Caps

VDD_LOW

SW_H

SW_BOOST

SW_BOOST_BAR

SW
_B
O
O
ST
_B
AR

SW_BOOST

SW_BOOST_BAR

SW_L

300pF 55mA

300pF 55mA

3nF

3nF
3nF

1nH

1nH

2nF

150m�

75m�

VDD_HIGH

Off Chip Supply Models

Chip Boundary

Chip Boundary

Core% Core% Core%
Vdd%
Low%

Vdd%
High%

DVFS

. . .

Core% Core% Core%
Vdd%
Low%

Vdd%
High%

DVFS

. . .

Chip Boundary

Vdd%
Low% Core% Core% Core%

Vdd%
High%

DVFS

. . .

Chip Boundary

(a) Before Boosting

(b) During Boosting

(c) Boosted

(d) Schematic

Processor Boosting

Remaining Processors

Boosting Cap
Network

Off Chip Supply Models

Chip Boundary

(d) Die Photo

Fig. 5. Short Stop’s Dual-Vdd chip configurations. (a) shows normal
operation, where all cores are connected to the low voltage network and the
cap networks are in parallel. (b) shows the cores in boost transition where
the core boosting is connected to the output of the serially connected cap
network. (c) shows the system once the transition stabilizes where the cap
network returns to parallel, and the boosted core runs off the external high
voltage. (d) shows the die photo of the 28nm Short Stop test chip [8].

Vc
or

e
(V

)

Vh
ig

h
(V

)

Inductive
Boost

Charge Share
/ Energize

1.7× faster latency

3.5× - 6× less droop

Fig. 6. Measured chip results [8] of Short Stop compared to a standard
dual-rail baseline.

transitioning the core quickly. This system keeps the voltage
regulators off-chip removing the TDP overheads required for
on-chip conversion.

Using Short Stop has several advantages. First, since the
boosting decaps are on chip, they can act quickly and, through
charge re-distribution, provide for a rapid transition. Second,
since the boosting decaps are shared by all the processors, their
area overhead is amortized over all the cores. In addition, while
the boosting network does require the distribution of a third
supply rail (Vboost), this rail does not need to have a high
level of signal integrity, meaning it can be more sparse. The
overall overhead of adding a boosting rail with reconfigurable
decaps is 11%. When considering advanced technologies, such
as deep trench capacitors [13], this overhead can be reduced
to less than 5%. Third, since the boosting network brings
the voltage of the transitioning core to nearly VddHigh, the
voltage droop on VddHigh is not nearly as large as when no
boosting network is used. Extra decaps on the high supply
further suppress the droop to a level that is acceptable. The
area overhead of the VddHigh rail is just 5%. So the overall
area overhead of Shortstop is ∼10-16%. Finally, short stop
can be used to perform both fine- and coarse-grained voltage
control. Through boosting Short Stop provides nanosecond

Decision
engine

Short
Stop

Load
monitor

VR

VR

C
oarse-grain adjustm

ent

Query
identifier

Queries
Query info

Load info

Adrenaline
runtime system

Fine-grain switching

Fig. 7. The Adrenaline framework. Adrenaline makes fine-grain boosting
decisions based on the characteristics of each incoming query, and controls
the Short Stop circuit to switch between the high/low voltage rails (VRs)
quickly. Meanwhile, Adrenaline also monitors long-term loading information,
and makes proper adjustments to the voltage on the high/low VRs periodically.

scale voltage transitions to adjust to fine-grained changes in
behavior (query level) and can adapt the off-chip voltage
regulators over longer periods of time to adjust to coarse-
grained changes in workload behavior (request rate level).

Short Stop was fabricated and tested in a 28nm technology
by Pinckney et al. [8], proving the feasibility of the approach.
Figure 6 provides a summary of the measured data on tran-
sition times of that chip. The baseline for comparison was a
standard dual-rail approach. Short Stop provides nanosecond
scale transitions that are 1.7x faster with a 3.5-6x smaller
voltage droop. The original paper also provides results showing
the scalability of the approach across different core sizes/ca-
pacitances.

IV. ADRENALINE FRAMEWORK

This section describes the design of the Adrenaline runtime
system, which takes advantage of the fast V/f switching
capability of the Short Stop circuit to rein in tail latency by
boosting precisely those queries that contribute to the tail.

Adrenaline Overview An overview of the Adrenaline runtime
system is presented in Figure 7. Adrenaline is composed of
two components, a decision engine and a load monitor. First,
the decision engine chooses from between the low or high
V/f settings at the individual query level to boost the speed
of precisely those queries that contribute to tail latency, based
on the query characteristics analyzed by the equipped query
identifier, reducing the latency of those queries to shorten the
tail of the query latency distribution. This is in contrast to
conventional V/f scaling techniques that monitor the query load
and distribution over long timescales (usually several seconds)
and adjust the V/f settings for large clusters of queries.

Second, Adrenaline’s load monitor performs lightweight
accounting on incoming queries to measure the load to the
system (e.g., to measure queries per second), which in turn is
used to drive a coarse-grained tuning policy that changes the
supply voltage parameters to the off-chip voltage regulators.
This gives Adrenaline the capacity to adapt the Short Stop cir-
cuit to address longer-term (milliseconds or longer) changes in

the characteristics of the query profile, such as fluctuations in
user demand (queries per second) or the type and composition
of queries.

A. Decision Engine

The purpose of the decision engine is to rapidly identify
the queries that should be boosted to have the largest impact
on reducing tail latency. First, queries that are amenable to
boosting because they are compute-bound but are not in the
tail can have a significant impact on tail latency via the indirect
mechanism of reducing queuing delay for queries that are in
the tail of the latency distribution. Second, queries that are
themselves in the tail of the distribution have a direct impact
on tail latency. We therefore design the decision engine to
use the following two guiding principles to determine which
queries to boost:

1) Boostability – only those queries that are amenable
to boosting should be boosted. Power spent boosting
queries that do not speed up is wasted. Furthermore,
queries that are more amenable to boosting confer
a larger benefit to subsequent queries that may be
headed for the tail of the distribution.

2) Long-running Queries – as long as they are boost-
able, queries that are destined to be in the tail of the
latency distribution have the most direct impact on
tail latency and therefore should be boosted.

These characteristics may be difficult to directly reason about,
particularly at the short timescale necessary to boost a query
quickly after arriving at the host server. Fortunately, the
presence of one or both of these characteristics are often
indicated by other easily identifiable proximate characteristics.
Such characteristics include:

• Query Type – different query types, which are easily
identifiable as part of the query metadata, often have
very different latency profiles. For example, Figure 2
shows that Memcached GET queries have around a
third of the latency of SET queries.

• Query Composition – the same type of query may
have other easily identifiable characteristics that cor-
relate well with query latency. For example, Figure 3
shows that Web Search has very different latency
profiles for queries with different number of words.

B. Defining the Boosting Policy

Query type and query composition are used to develop
policies that determine when the Short Stop circuit changes
rails, lowering and raising the supply voltage at the query level
to bring down the latency of critical queries. These policies
are developed offline using a short, targeted profiling phase on
the application to characterize the relationship between query
latency and the high-level characteristics of the query.

Adrenaline’s boosting policies are guided by how different
types of requests can affect the tail the most under different V/f
settings. For each application we first analyze the behavior of
requests across varying characteristics, load levels, and chip
V/f settings. The characteristics chosen for the analysis are
particular to the application under study, and are chosen such

that they are characteristics that can be rapidly identified (e.g.,
by checking a few bits in the header, or the size of the
application query packet). For Memcached, we characterize
requests across the different query types: GET, SET and DEL.
For Web Search we characterize across a series of lengths,
which correlates well to the size of the query packet and
the latency of the query. For Memcached, we find that SET
queries are highly amenable to boosting the bulk of the high-
latency queries. For Web Search, we find that queries with
fewer than 6 keywords are similarly amenable to boosting and
have high latency.

Adrenaline also watches the condition in which a query
tend to fall in the tail of the latency distribution, even if
that query does not belong to the types mentioned above.
Adrenaline’s policy is to keep track of the time a query has
spent in the system, and check if it exceeds a predefined
boosting threshold. When the threshold is reached, the query
is considered long-running, and has a high probability to end
up falling in the tail; hence, Adrenaline will make boosting
decisions for this query. We found by experiment that setting
the threshold to 0.5x of the QoS target of the benchmark gives
us good results.

C. Rapidly Identifying Query Characteristics

Adrenaline is implemented as a runtime engine in the first
layer of software that processes incoming request packets to
take advantage of features of advanced NICs and low-latency
networking stacks, such as OS-bypass, zero-copy, and direct
cache access. These features facilitate extremely low latency
packet delivery to the Adrenaline runtime engine, which can
then rapidly examine packet headers to make a per-query
boosting decision; prototype systems have demonstrated packet
delivery latencies below 1.5us and commercial offerings from
vendors like Mellanox have similar performance character-
istics [14]. In addition, by fixing the header lengths of the
link, network, and transport layers, even shorter times can be
achieved. In the case of Memcached the request type field
can be attained by inspecting the corresponding bits in the
application layer of a binary encoded Memcached packet. For
the Web Search workloads a table of sequence numbers and
corresponding packet sizes can be used to determine the total
request length, which is used as a proxy for the size of the
search.

D. Boosting and Unboosting the Core

Once a query type is identified, the Adrenaline runtime
decision engine makes a boosting decision based on the
profile characteristics obtained from the analysis of the request
behavior. If a decision to boost a core not already boosted is
made, the runtime signals the Short Stop hardware to insert the
core into a boosting queue. Because Short Stop only allows
one core to transition at a time, the queue is serviced in a FIFO
fashion. Note the worst case time spent in the queue will be
short, as the transition times for Short Stop are on the order
of 10’s of nanoseconds and the number of cores on a chip is
relatively small. If a decision to boost a core is made while
the core is already boosted, the Adrenaline runtime tracks the
additional request. Once all the requests finish, the Adrenaline
runtime signals Short Stop to unboost the core.

E. Clock Distribution

Clock distribution is another key consideration in this
design. Our proposed solution is to distribute a chip-wide clock
at the high frequency, but at low voltage. At each node the
clock is divided down to the required frequency before entering
each core. In a typical system the majority of the clock power
is consumed at the bottom of the tree (i.e., flip flops) meaning
that running the clock globally at high frequency has minimal
impact on the total power. In boost mode the local clock
tree remains at low voltage and is level converted to VddHigh

only in the last driving stage. With this approach, clock tree
synchronizing mechanisms such as delay-locked loops (DLLs)
would not need to re-lock during boosting transitions since the
voltage and latency of the clock tree does not change.

F. Adrenaline for Energy Efficiency

In addition to reducing the tail latency, when needed,
Adrenaline can be configured to scale down the voltage and
frequency at the query level when the tail latency is much
lower than the latency target specified in the service level
agreement (SLA). Similar to improving the tail latency, this
mechanism works by leveraging query characteristics to iden-
tify those queries that are unlikely to have a large impact on tail
latency and throttle the voltage during such queries. Adrenaline
is flexible enough to adjust policies dynamically based on high-
level characteristics of user load, such as using different latency
targets or optimization targets for different levels of load or
mixes of query types. Along with the tail reduction approach,
we evaluate using Adrenaline to target energy efficiency in
Section V.

G. Responding to Load Changes

The Short Stop circuit can be configured to use different
supply voltages on its two voltage rails with a penalty on
the order of tens of microseconds. To take advantage of this
feature, we employ a load monitor in Adrenaline to monitor
the query traffic over time and use this to switch between
supply voltage configurations every few seconds to provide
maximum benefit to the current query traffic pattern. Note
that the fundamental activity of the decision engine is not
affected by this tuning, as it continues to make decisions about
which queries should be boosted. Since this tuning is done in
a much coarser granularity, although it imposes a short pause
for changing the voltage on the two voltage rails, it has little
impact on the overall distribution of query latency.

V. EVALUATION

In this section, we evaluate the effectiveness of Adrenaline
in both reining the tail latency as well as saving energy.
We conduct our evaluations at single-server level, as well as
cluster-level for a cluster composed of thousands of servers.

A. Evaluation Methodology

To accurately evaluate Adrenaline we use the BigHouse
simulator [15], which is a datacenter simulation infrastructure
that takes workload characteristics to synthesize an event trace
to drive a discrete event simulation. We implement Adrenaline
and a conventional DVFS baseline in BigHouse. We evaluate
both using various configurations.

Latency

P
o

w
e

r

j

k

l

u v w

t Best latency possible

u Tight latency target

v Medium latency target

w Loose latency target

i Best power possible

j Tight power budget

k Medium power budget

l Loose power budget

t

i

Core configuration of

different frequency

Fig. 8. Selection ofTight/Medium/Loose power budget and Tight/Medi-
um/Loose latency target for our evaluation.

1) Real system performance characterization: In the Big-
House simulator, two distributions are used to represent a
workload: the service distribution and the inter-arrival dis-
tribution. We collect these distributions from real system
measurements. We use Memcached and Web Search from
Cloudsuite [11] as our workloads.

The service time distribution describes how fast the server
can process each individual request without counting the
queueing latency. To obtain this distribution, we first instru-
ment the Web Search and Memcached server-side software
to record the time at the beginning and the end of processing to
measure the service time distribution. Then we send requests
to the instrumented server one-at-a-time so that no queueing
will occur within the server, and collect the latency statistics
as the service time distribution.

The machine we use for our service-time distribution
measurement features an Intel Xeon CPU E5-2407 v2 @
2.40GHz CPU, which has 2 sockets with 4 cores per sockets.
The size of the main memory is 136 GB. The kernel of the
underlying operating system is Linux 3.11.0-15-generic. We
carefully deploy the server-side of the benchmarks and the
client-side counterpart in a controlled environment to minimize
noise due to resource racing and the varying communication
over the network, etc. We collect the service-time distribution
at each of the frequency steps of the core.

Many workloads have multiple request types, rather than a
single type. As prior work suggests [16], there is a big variabil-
ity in terms of request type composition in production systems
and it has a significant impact on the overall performance. Thus
we capture this by using the same request type composition as
reported in prior work [16] for Memcached, and classifying
the requests according to length for Web Search due to
the lack of published characterization. Specifically, APP, ETC
and VAR refer to the same compositions as described in prior
work [16] for Memcached. For Web Search, ORG refers
to the composition hard-coded in the Web Search client
loader, and SHR, LNG, and UNI refers to synthetic composi-
tions of requests that are short-query-heavy, long-query-heavy,
and uniform, respectively. The detailed breakdown of each
composition is listed in Table I and Table II.

We collect the service time distribution for each type of
request separately, and evaluate our system under various
composition configurations.

TABLE I. REQUEST TYPE COMPOSITION OF MEMCACHED .

Composition GET% SET% DEL%
APP 83.8 4.7 11.5
ETC 68.6 2.7 28.7
VAR 18.3 81.7 0.0

TABLE II. REQUEST TYPE COMPOSITION OF WEB SEARCH .

Composition SHORT% MEDIUM% LONG%
SHR 53.1 28.7 18.2
LNG 12.7 34.4 52.9
ORG 92.0 5.5 2.5
UNI 34.0 33.0 33.0

Different from service time distribution, inter-arrival dis-
tribution heavily depends on the specific configuration and
workload. Thus we use the characteristics published by large
companies that run these services in production. For Web
Search, we follow the guideline from prior work [17], which
suggests to use an exponential distribution as an approximation
according to the empirical measurement from the production
Google Web Search server node. And we use a Generalized
Pareto distribution for Memcached as suggested in prior
work [16], which characterizes the production Memcached
traffic at Facebook.

2) Power modeling: The power equation we are using is
adapted based on previous work [18]. We change the exponent
term in the equation from 3.0 to 2.7 to consider the effect of
imperfect components such as the overhead of the global clock
distribution network discussed in Section IV-E. The power
consumption is described in the following formula:

P0 = Psta,0 + Pdyn,0

Psta,0 = 0.2× Pdyn,0

Pdyn = Pdyn,0 × (f/f0)
2.7

Psta = Psta,0 × (f/f0),

(1)

where P0 is the power consumption measured on a real
machine, and Psta,0 is the static part of P0 and Pdyn,0 is
the dynamic counterpart; f0 is the lowest frequency step the
machine can run at. P and f are the power and the frequency
the CPU is currently operating at.

We instrumented BigHouse to simulate the Adrenaline
framework by leveraging multiple service-time distributions in
BigHouse on the fly. In addition we model the boosting and
decision latencies as well as the requirement to only transition
one core from low to high voltage at a time. Upon starting
to service a request, our instrumented BigHouse picks the
corresponding service-time distribution based on the type of
request and the voltage level (always the low-voltage mode at
the beginning of a request), and sets the instantaneous power
number to be the number that is corresponding to that voltage

DVFS Adrenaline
1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

2.2x

2.4x

E
n

e
rg

y
S

a
vi

n
g

10% Latency Target @ Low Load

DVFS Adrenaline
1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

2.2x

2.4x

20% Latency Target @ Low Load

APP 95% latency

APP 99% latency

ETC 95% latency

ETC 99% latency

VAR 95% latency

VAR 99% latency

DVFS Adrenaline
1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

2.2x

2.4x

30% Latency Target @ Low Load

DVFS Adrenaline
1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

2.2x

2.4x

E
n

e
rg

y
S

a
vi

n
g

10% Latency Target @ Medium Load

DVFS Adrenaline
1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

2.2x

2.4x

20% Latency Target @ Medium Load

DVFS Adrenaline
1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

2.2x

2.4x

30% Latency Target @ Medium Load

DVFS Adrenaline
1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

2.2x

2.4x

E
n

e
rg

y
S

a
vi

n
g

10% Latency Target @ High Load

DVFS Adrenaline
1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

2.2x

2.4x

20% Latency Target @ High Load

DVFS Adrenaline
1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

2.2x

2.4x

30% Latency Target @ High Load

Fig. 9. Tail latency reduction for Memcached using coarse-grain DVFS vs.
Adrenaline. The row presents three load levels and the column represents three
energy budgets for boosting. Adrenaline achieves much higher tail latency
reduction at various load levels, across workload compositions and energy
budgets.

level. When BigHouse reaches the point of boosting a re-
quest, our instrumented BigHouse will calculate the remaining
amount of work of a request plus the switching overhead, and
use the boosted version of the service-time distribution file
to determine the processing time for the rest of the work;
the energy consumption of the elapsed period of time will
be summed up, and the instantaneous power will be updated
to the new (boosted) version at the same time. For example,
if BigHouse decides to boost from 1.2 GHz to 1.8 GHz at
50% of a request, it calculates the energy used for the first
half of the request at the 1.2 GHz power number, and uses
the 1.8 GHz service time to process the second half of the
request; upon the request completion, it calculates the energy
consumption of the second half of the request using the 1.8
GHz power number, and switches back to using the 1.2 GHz
service-time distribution for the next incoming request.

B. Reining in the Tail

In this section, we evaluate the effectiveness of Adrenaline
and the conventional coarse-grain sliding window-based DVFS
in optimizing the tail latency. Starting from the low frequency
as the baseline (e.g. core configuration at bottom right as
illustrated in Figure 8), which consumes the lowest energy
while generating the highest latency, we gradually increase
our energy budget and measure the tail latency reduction at
both the 95%-tile and 99%-tile.

Memcached - Figure 9 shows the tail latency reduction
for Memcached achieved by both coarse-grain DVFS and
Adrenaline. In this figure, each row corresponds to a load level
(low-, medium- and high-load) and each column corresponds
to an energy budget for boosting (low-, medium- and high-
budget). The low, medium and high energy budgets are 10%,
20% and 30% of energy increase from the baseline energy,
respectively. In each sub-figure, we present the tail reductions
achieved by both coarse-grain DVFS (the left cluster of bars)
and Adrenaline (the right cluster of bars). Each bar in a cluster

DVFS Adrenaline
1.0x

1.5x

2.0x

2.5x

3.0x

E
n

e
rg

y
S

a
vi

n
g

10% Latency Target @ Low Load

DVFS Adrenaline
1.0x

1.5x

2.0x

2.5x

3.0x
20% Latency Target @ Low Load

SHR 95% latency

SHR 99% latency

LNG 95% latency

LNG 99% latency

UNI 95% latency

UNI 99% latency

ORG 95% latency

ORG 99% latency

DVFS Adrenaline
1.0x

1.5x

2.0x

2.5x

3.0x
30% Latency Target @ Low Load

DVFS Adrenaline
1.0x

1.5x

2.0x

2.5x

3.0x

E
n

e
rg

y
S

a
vi

n
g

10% Latency Target @ Medium Load

DVFS Adrenaline
1.0x

1.5x

2.0x

2.5x

3.0x
20% Latency Target @ Medium Load

DVFS Adrenaline
1.0x

1.5x

2.0x

2.5x

3.0x
30% Latency Target @ Medium Load

DVFS Adrenaline
1.0x

1.5x

2.0x

2.5x

3.0x

E
n

e
rg

y
S

a
vi

n
g

10% Latency Target @ High Load

DVFS Adrenaline
1.0x

1.5x

2.0x

2.5x

3.0x
20% Latency Target @ High Load

DVFS Adrenaline
1.0x

1.5x

2.0x

2.5x

3.0x
30% Latency Target @ High Load

Fig. 10. Tail latency reduction for Web Search by relaxing energy budget
at various load levels using Adrenaline and DVFS.

0.02 0.04 0.06 0.08 0.10 0.12
Latency (ms)

0.00

0.01

0.02

0.03

0.04

0.05

P
ro

b
a
b
il
it
y
D
e
n
si
ty

 F
u
n
ct

io
n
 (
P
D
F
)

DVFS - PDF

DVFS - 95% latency

DVFS - 99% latency

Adrenaline - PDF

Adrenaline - 95% latency

Adrenaline - 99% latency

Fig. 11. Measured latency probability density function of Memcached when
applying DVFS and Adrenaline respectively.

represents three real-world workload compositions described in
Table I and the latency reductions for each composition at two
percentiles, 95% and 99%. As shown in the first column, given
a low energy budget (e.g., 10% energy increase), the coarse-
grain DVFS fails to reduce the tail latency, while Adrenaline
is able to improve the 95%-tile latency by up to 2.20x and the
99%-tile latency by up to 2.25x. This is due to the fact that the
10% energy budget is too small for the coarse-grain DVFS to
boost to the next frequency step, while Adrenaline can take
advantage of the fine-granularity nature and boost a small
percent of the requests at the tail without consuming much
energy. As we increase the energy budgets to 20% and 30%,
coarse-grain DVFS starts to show limited improvement on the
tail latency. It slightly outperforms Adrenaline for workload
VAR, because GET and DEL requests are usually surrounded
by groups of SET requests in VAR. Adrenaline still tries to
react to these short-term changes by first switching the core
to a lower frequency when the core starts to process these
GET and DEL requests. However, since GET and DEL requests
now have high probabilities to queue behind one or more SET
requests, they experience long waiting time, and thus become

highly likely to be at the tail. Therefore, while Adrenaline does
not rein in these GETs and DELs promptly, coarse-grain DVFS
luckily benefits from its inertia of switching by running at the
higher frequency for the entire epoch of requests. However, its
improvement on the tail latency is rather limited for the other
workload compositions. In general, Figure 9 shows that, across
various request compositions, load levels and energy budgets,
Adrenaline almost always improves the tail latency by a larger
amount than the coarse-grain DVFS.

Web Search - Similarly, Figure 10 presents the tail latency
reduction for Web Search at various load levels and across
four request composition configurations (specified in Table II).
As demonstrated in the sub-figures, Adrenaline shows an edge
over coarse-grain DVFS across almost all different workload
compositions and energy budgets, especially when the system
is at medium and high load levels (the last two rows) where
tail reduction is critical. The advantage becomes even more
significant when the system is given a higher energy budget.
Adrenaline achieves up to a 3.03x tail reduction when given
a 20% budget. Given a 30% energy budget, while coarse-
grain DVFS starts to take advantage of the large energy
head room and show comparable tail latency reduction for
ORG, Adrenaline still achieves better reduction for the same
composition, and consistently outperforms coarse-grain DVFS
across all other workload compositions.

Latency Distribution - To better understanding the impact
of coarse-grain DVFS and Adrenaline on the overall latency
distribution, Figure 11 compares the distributions achieved by
both approaches under the same power budget for boosting.
In this figure, the request type composition is APP (Table I),
composed of 4.7% SET, 11.5% DEL and 83.8% GET requests.
This figure presents two probability density functions (PDFs)
of the measured request latency of all requests: one measured
when using coarse-grained DVFS (yellow), and the other one
using Adrenaline (purple). The dotted lines indicate the 95%
and 99%-tile latency of each distribution. For the distributions
both coarse-grain DVFS and Adrenaline show GET and DEL
requests are tightly clustered on the left, whereas SET requests
have a much higher latency and compose the long tail.

Compared to the no-boosting scenario, the coarse-grain
DVFS shifts the entire distribution to the left, reducing both
the mean and 99%-tile latency by a small amount. However,
Adrenaline spends the limited power budget for boosting in a
more effective way. Instead of boosting all requests including
both the fast requests and the tail requests, it only boosts
the requests that have high probability to be in the tail. The
mean latency Adrenaline achieves is slightly slower than that
achieved by the coarse-grain DVFS, but it is still faster than the
no-boosting scenario. More importantly, Adrenaline achieves
a much more significant reduction on the tail latency than the
coarse-grain DVFS.

Figure 12 shows a Pareto-optimal curve for the power
versus 99% latency tradeoff of different voltage configurations
for both DVFS and Adrenaline. At extremely tight SLA
targets the DVFS approach is necessary, but as soon as the
latency target is loosened the Adrenaline approach offers either
significant reductions in tail latency (further to the left at a
given power budget) or a gain in power efficiency (lower in
the graph for a given target latency).

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Normalized p99 latency

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

cp
u

po
w

er

DVFS
Adrenaline

Fig. 12. The scatter plot of Memcached, in which each data point represents
the normalized power/latency performance of a single CPU configuration with
load composition APP and low traffic.

C. Energy Saving

In addition to reining the tail latency by fine-grain boosting,
Adrenaline can also be used to take advantage of the latency
slack, especially at low load, to improve energy efficiency. As
illustrated in Figure 8, we start at the highest CPU frequency,
which generates the lowest possible latency, and evaluate
the effectiveness of coarse-grain DVFS and Adrenaline in
improving the energy efficiency as we gradually relax the tail
latency target. Specifically, we refer 10% latency lack as the
strict target, 20% as the moderate target and 30% as the relaxed
target in our experiments.

Figure 13 presents the energy savings for Memcached
achieved by coarse-grain DVFS and Adrenaline, respectively.
As demonstrated in the figure, given the same latency target,
Adrenaline can significantly reduce the energy consumption,
especially at low load. It achieves up to a 2.12x energy savings
over the no-DVFS baseline, whereas DVFS can only save
1.56x in the best scenario. At high load, both Adrenaline and
coarse-grain DVFS cannot achieve much energy savings. This
is to be expected because at the high load, there is not much
latency slack due to the queuing delay. It is very hard to
achieve energy savings unless we are willing to sacrifice a
great amount of tail latency slack. Similarly, Figure 14 shows
that Adrenaline can achieve significant energy savings across
all three different load levels, especially at low and medium
load levels, for Web Search. In addition, Adrenaline often
achieves greater energy savings compared to coarse-grain
DVFS. This is because Adrenaline leverages the observation
demonstrated in Figure 2 and Figure 3, and prioritizes the
boosting of those requests which give the most benefits, which
effectively prevents Adrenaline from wasting energy on those
requests with low boostability.

D. Overall Comparison

Figures 15 and 16 present Adrenaline’s improvement of
tail latency and energy savings over DVFS, averaged across
all workload compositions. Overall, Adrenaline always per-
forms better than coarse-grain DVFS. When optimizing for
tail latency, Adrenaline achieves up to 22.7% improvement
over DVFS by dynamically scaling the frequency at a finer
granularity to target only the most important requests.

DVFS Adrenaline
1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

2.2x

2.4x

E
n

e
rg

y
S

a
vi

n
g

10% Latency Target @ Low Load

DVFS Adrenaline
1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

2.2x

2.4x

20% Latency Target @ Low Load

APP 95% latency

APP 99% latency

ETC 95% latency

ETC 99% latency

VAR 95% latency

VAR 99% latency

DVFS Adrenaline
1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

2.2x

2.4x

30% Latency Target @ Low Load

DVFS Adrenaline
1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

2.2x

2.4x

E
n

e
rg

y
S

a
vi

n
g

10% Latency Target @ Medium Load

DVFS Adrenaline
1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

2.2x

2.4x

20% Latency Target @ Medium Load

DVFS Adrenaline
1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

2.2x

2.4x

30% Latency Target @ Medium Load

DVFS Adrenaline
1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

2.2x

2.4x

E
n

e
rg

y
S

a
vi

n
g

10% Latency Target @ High Load

DVFS Adrenaline
1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

2.2x

2.4x

20% Latency Target @ High Load

DVFS Adrenaline
1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

2.2x

2.4x

30% Latency Target @ High Load

Fig. 13. Energy saving for Memcached by relaxing the tail latency target
at various load levels using Adrenaline and coarse-grain DVFS.

DVFS Adrenaline
1.0x

1.5x

2.0x

2.5x

3.0x

E
n

e
rg

y
S

a
vi

n
g

10% Latency Target @ Low Load

DVFS Adrenaline
1.0x

1.5x

2.0x

2.5x

3.0x
20% Latency Target @ Low Load

SHR 95% latency

SHR 99% latency

LNG 95% latency

LNG 99% latency

UNI 95% latency

UNI 99% latency

ORG 95% latency

ORG 99% latency

DVFS Adrenaline
1.0x

1.5x

2.0x

2.5x

3.0x
30% Latency Target @ Low Load

DVFS Adrenaline
1.0x

1.5x

2.0x

2.5x

3.0x

E
n

e
rg

y
S

a
vi

n
g

10% Latency Target @ Medium Load

DVFS Adrenaline
1.0x

1.5x

2.0x

2.5x

3.0x
20% Latency Target @ Medium Load

DVFS Adrenaline
1.0x

1.5x

2.0x

2.5x

3.0x
30% Latency Target @ Medium Load

DVFS Adrenaline
1.0x

1.5x

2.0x

2.5x

3.0x

E
n

e
rg

y
S

a
vi

n
g

10% Latency Target @ High Load

DVFS Adrenaline
1.0x

1.5x

2.0x

2.5x

3.0x
20% Latency Target @ High Load

DVFS Adrenaline
1.0x

1.5x

2.0x

2.5x

3.0x
30% Latency Target @ High Load

Fig. 14. Energy saving for Web Search by relaxing the tail latency target
at various load levels using Adrenaline and DVFS.

Optimize for Latency Optimize for Energy
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

Im
p
ro
ve
m
e
n
t
o
ve
r
D
V
F
S

Low Load

Medium Load

High Load

Fig. 15. Improvement of Adrenaline over coarse-grain DVFS for
Memcached.

Optimize for Latency Optimize for Energy
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

Im
p
ro
ve
m
e
n
t
o
ve
r
D
V
F
S

Low Load

Medium Load

High Load

Fig. 16. Improvement of Adrenaline over coarse-grain DVFS for Web
Search.

0 200 400 600 800 1000
Number of Servers

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

P
(s
e
rv
ic
e
 l
e
ve
l
la
te
n
cy
 >
 Q
o
S
 t
a
rg
e
t)

Memcached

DVFS

Adrenaline

0 200 400 600 800 1000
Number of Servers

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%
Web Search

DVFS

Adrenaline

Fig. 17. Effectiveness of Adrenaline in reducing the tail latency at service
level comparing to DVFS.

E. Tail at Scale

Many large-scale web services including Memcached and
Web Search use one or even many clusters of machines to
serve user queries. As presented in prior work [2, 19], such web
services tend to have a large amount of inter-communications
and high fan-out. For example, a single user HTTP request
can result in hundreds of Memcached data fetches and many
round trips within a cluster at Facebook. As the number
of servers involved in serving a user request increases, the
probability of violating the Quality of Service target (e.g.,
request latency target) grows significantly [1].

In this section, we evaluate the effectiveness of Adrenaline
in reducing the service-level tail latency violations by reducing
the tail latency at each leaf node. We use the 99% tail latency
measured when the coarse-grained DVFS is enabled as the
service-level latency target, and compare the probabilities of
one request in a fan-out cluster violating the service-level
QoS target when using coarse-grain DVFS versus Adrenaline.
Figure 17 presents the probability that at least one leaf node
misses its QoS target as a function of the number of leaf
nodes for a service that must wait for all leaves to respond. As
shown, the probability of a request violating the service level
QoS target increases drastically as the number of servers in
the fan-out cluster increases. With 100 servers, the probability
of one request violating the service-level target has increased
to 63% for the coarse-grain DVFS. By enabling Adrenaline
to reduce the tail latency at leaf nodes, we are able to
reduce the probability with 100 servers significantly, by 19%
for Memcached and by 11% for Web Search. With 200
servers, Adrenaline achieves an 18% improvement over DVFS
for Memcached and a 13% improvement for Web Search.

VI. RELATED WORK

A. DVFS and Power Management

Dynamic voltage and frequency scaling (DVFS) has been
widely studied to improve the energy efficiency of various
scales of computational units over the past several decades [4,
20–26]. However, most of the prior works only look at voltage
and frequency scaling decisions at coarse granularity. In [20–
22], a decision engine, which leverages measured runtime
information, is implemented as regression models or dynamic
compilation mechanisms to find the best voltage and frequency
levels to optimize for energy efficiency. Researchers have also
put efforts into coarse-grained DVFS decisions on modern
multi-core processors [22, 24–26], in order to achieve better
system throughput and energy efficiency. Similarly to DVFS
on processors, some prior works also explore the opportunities
of deploying DVFS on memory systems [27–30]. Related
works on quick voltage boosting techniques are discussed in
Section 3.

Recently, there is an increasing research interest on power
management in datacenters [4, 18, 26, 31, 32] from different
perspectives. Among them, PEGASUS [4] constantly monitors
the workload and the performance statistics of the recent
requests within a sliding window, and leverages a feedback
controller to minimize the power consumption without vio-
lating the QoS requirement. This work differs from theirs by
identifying and selectively targeting only the requests that most
likely will fall in the tail of the distribution.

B. Tail Latency

As reported in prior work [1], tail latency has become a
major concern of modern datacenter applications, which has
gained much research attention. Since many datacenter work-
loads have critical tail latency requirements, many works [33–
40] try to improve the performance predictability of such
workloads to optimize datacenter utilization. This requires pre-
cise performance interference prediction and careful control of
resource sharing, in order to make better scheduling decisions.
Another class of optimization tries to reduce the tail latency.
DeTail [41] proposes to exchange package information across
multiple network layers to optimize the scheduling of package
processing and distribute the network load evenly. [42, 43]
move the network stack from kernel space to user space to
avoid overhead, so that they can achieve lower query latency,
as well as higher system throughput. Adrenaline differs from
these works due to the fact that it specifically accelerates
the queries that tend to appear in the tail, which makes the
optimization more efficient than simply boosting the entire
latency distribution.

VII. CONCLUSION

In this paper, we present the Adrenaline methodology that
adjusts the voltage/frequency at query-level granularity to rein
in the tail latency as well as to save energy. By evaluating
our methodology under various realistic workload configu-
rations, we demonstrate the effectiveness of our methodol-
ogy. We achieve up to a 2.50x tail latency improvement for

Memcached and up to a 3.03x for Web Search over coarse-
grained DVFS given a fixed boosting power budget. When
optimizing for energy reduction, Adrenaline achieves up to
a 1.81x improvement for Memcached and up to a 1.99x
improvement for Web Search over DVFS.

VIII. ACKNOWLEDGEMENT

We thank our anonymous reviewers for their feedback and
suggestions. This research was supported by Google and by the
National Science Foundation under grants CCF-SHF-1302682
and CNS-CSR-1321047.

REFERENCES

[1] J. Dean and L. A. Barroso, “The Tail at Scale,” Commun. ACM, vol. 56,
pp. 74–80, Feb. 2013.

[2] L. A. Barroso, J. Dean, and U. Hölzle, “Web Search for a Planet: The
Google Cluster Architecture,” IEEE Micro, vol. 23, pp. 22–28, Mar.
2003.

[3] L. Emurian, A. Raghavan, L. Shao, J. M. Rosen, M. Papaefthymiou,
K. Pipe, T. F. Wenisch, and M. Martin, “Pitfalls of Accurately Bench-
marking Thermally Adaptive Chips,” Power (W), vol. 5, p. 10.

[4] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis,
“Towards energy proportionality for large-scale latency-critical work-
loads,” in Proceeding of the 41st annual international symposium on
Computer architecuture, pp. 301–312, IEEE Press, 2014.

[5] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch,
“Thin Servers with Smart Pipes: Designing SoC Accelerators for Mem-
cached,” in Proceedings of the 40th Annual International Symposium on
Computer Architecture, ISCA ’13, (New York, NY, USA), pp. 36–47,
ACM, 2013.

[6] W. Kim, M. Gupta, et al., “System level analysis of fast, per-core DVFS
using on-chip switching regulators,” in High Performance Computer
Architecture, 2008. HPCA 2008. IEEE 14th International Symposium
on, pp. 123 –134, February 2008.

[7] W. Kim, D. Brooks, et al., “A fully-integrated 3-level DC/DC converter
for nanosecond-scale DVS with fast shunt regulation,” in Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE
International, pp. 268 –270, feb. 2011.

[8] N. Pinckney, M. Fojtik, B. Giridhar, D. Sylvester, and D. Blaauw,
“Shortstop: An on-chip fast supply boosting technique,” in VLSI Circuits
(VLSIC), 2013 Symposium on, pp. C290–C291, IEEE, 2013.

[9] T. N. Miller, X. Pan, R. Thomas, N. Sedaghati, and R. Teodorescu,
“Booster: Reactive core acceleration for mitigating the effects of
process variation and application imbalance in low-voltage chips,” in
High Performance Computer Architecture (HPCA), 2012 IEEE 18th
International Symposium on, pp. 1–12, IEEE, 2012.

[10] W. Godycki, C. Torng, I. Bukreyev, A. Apsel, and C. Batten, “En-
abling Realistic Fine-Grain Voltage Scaling with Reconfigurable Power
Distribution Networks,” in Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), MICRO-47,
(New York, NY, USA), ACM, 2014.

[11] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing
the Clouds: A Study of Emerging Scale-out Workloads on Modern
Hardware,” in Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVII, (New York, NY, USA), pp. 37–48, ACM,
2012.

[12] I. Corporation, “Intel Turbo Boost Technology in Intel Core Microarchi-
tecture (Nehalem) Based Processors.” White paper, Intel Corporation,
November 2008.

[13] G. Wang, D. Anand, et al., “Scaling deep trench based eDRAM on
SOI to 32nm and Beyond,” in Electron Devices Meeting (IEDM), 2009
IEEE International, pp. 1 –4, dec. 2009.

[14] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau, A. Schus-
ter, and D. Tsafrir, “It’s Time for Low Latency,” in ACM SIGARCH
Computer Architecture News, vol. 40, pp. 411–422, 2012.

[15] D. Meisner, J. Wu, and T. F. Wenisch, “BigHouse: A Simulation
Infrastructure for Data Center Systems,” in Proceedings of the 2012
IEEE International Symposium on Performance Analysis of Systems
& Software, ISPASS ’12, (Washington, DC, USA), pp. 35–45, IEEE
Computer Society, 2012.

[16] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload Analysis of a Large-scale Key-value Store,” in Proceedings
of the 12th ACM SIGMETRICS/PERFORMANCE Joint International
Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’12, (New York, NY, USA), pp. 53–64, ACM, 2012.

[17] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F.
Wenisch, “Power Management of Online Data-intensive Services,” in
Proceedings of the 38th Annual International Symposium on Computer
Architecture, ISCA ’11, (New York, NY, USA), pp. 319–330, ACM,
2011.

[18] D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap: eliminating
server idle power,” ACM SIGARCH Computer Architecture News,
vol. 37, no. 1, pp. 205–216, 2009.

[19] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling Memcache at Facebook,” in Proceedings
of the 10th USENIX Conference on Networked Systems Design and
Implementation, nsdi’13, (Berkeley, CA, USA), pp. 385–398, USENIX
Association, 2013.

[20] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage and
frequency scaling for precise energy and performance tradeoff based on
the ratio of off-chip access to on-chip computation times,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 24, no. 1, pp. 18–28, 2005.

[21] Q. Wu, M. Martonosi, D. W. Clark, V. J. Reddi, D. Connors, Y. Wu,
J. Lee, and D. Brooks, “A dynamic compilation framework for con-
trolling microprocessor energy and performance,” in Proceedings of the
38th annual IEEE/ACM International Symposium on Microarchitecture,
pp. 271–282, IEEE Computer Society, 2005.

[22] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi,
“An analysis of efficient multi-core global power management policies:
Maximizing performance for a given power budget,” in Proceedings of
the 39th annual IEEE/ACM international symposium on microarchitec-
ture, pp. 347–358, IEEE Computer Society, 2006.

[23] S. Kaxiras and M. Martonosi, “Computer architecture techniques for
power-efficiency,” Synthesis Lectures on Computer Architecture, vol. 3,
no. 1, pp. 1–207, 2008.

[24] J. Lee and N. S. Kim, “Optimizing throughput of power-and thermal-
constrained multicore processors using DVFS and per-core power-
gating,” in Design Automation Conference, 2009. DAC’09. 46th
ACM/IEEE, pp. 47–50, IEEE, 2009.

[25] T. Kolpe, A. Zhai, and S. S. Sapatnekar, “Enabling improved power
management in multicore processors through clustered DVFS,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2011, pp. 1–6, IEEE, 2011.

[26] D. Lo and C. Kozyrakis, “Dynamic management of TurboMode in
modern multi-core chips,” in 20th IEEE International Symposium on
High Performance Computer Architecture, HPCA 2014, Orlando, FL,
USA, February 15-19, 2014, pp. 603–613, 2014.

[27] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini,
“CoScale: Coordinating CPU and Memory System DVFS in Server Sys-
tems,” in Proceedings of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-45, (Washington, DC, USA),
pp. 143–154, IEEE Computer Society, 2012.

[28] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, “Mem-
ory Power Management via Dynamic Voltage/Frequency Scaling,” in
Proceedings of the 8th ACM International Conference on Autonomic
Computing, ICAC ’11, (New York, NY, USA), pp. 31–40, ACM, 2011.

[29] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini,
“MemScale: Active Low-power Modes for Main Memory,” in Proceed-
ings of the Sixteenth International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS XVI,
(New York, NY, USA), pp. 225–238, ACM, 2011.

[30] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bian-
chini, “MultiScale: Memory System DVFS with Multiple Memory
Controllers,” in Proceedings of the 2012 ACM/IEEE International
Symposium on Low Power Electronics and Design, ISLPED ’12, (New
York, NY, USA), pp. 297–302, ACM, 2012.

[31] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, “No
”Power” Struggles: Coordinated Multi-level Power Management for the
Data Center,” SIGARCH Comput. Archit. News, vol. 36, pp. 48–59, Mar.
2008.

[32] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and
C. Kozyrakis, “Power management of datacenter workloads using per-
core power gating,” Computer Architecture Letters, vol. 8, no. 2, pp. 48–
51, 2009.

[33] M. A. Laurenzano, Y. Zhang, L. Tang, and J. Mars, “Protean Code:
Achieving Near-Free Online Code Transformations for Warehouse Scale
Computers,” in Proceedings of the 47th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), MICRO-47, (New
York, NY, USA), ACM, 2014.

[34] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang, “SMiTe: Precise
QoS Prediction on Real-System SMT Processors to Improve Utilization
in Warehouse Scale Computers,” in Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
MICRO-47, (New York, NY, USA), ACM, 2014.

[35] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise Online
QoS Management for Increased Utilization in Warehouse Scale Com-
puters,” in Proceedings of the 40th Annual International Symposium
on Computer Architecture (ISCA), ISCA ’13, (New York, NY, USA),
pp. 607–618, ACM, 2013. Acceptance Rate: 19

[36] L. Tang, J. Mars, W. Wang, T. Dey, and M. L. Soffa, “ReQoS:
Reactive Static/Dynamic Compilation for QoS in Warehouse Scale
Computers,” in Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), ASPLOS ’13, (New York, NY, USA), pp. 89–100,
ACM, 2013. Acceptance Rate: 23

[37] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-
Up: Increasing Utilization in Modern Warehouse Scale Computers via
Sensible Co-locations,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), MICRO-44,
(New York, NY, USA), pp. 248–259, ACM, 2011. Acceptance Rate:
21

[38] L. Tang, J. Mars, and M. L. Soffa, “Compiling for Niceness: Mitigating
Contention for QoS in Warehouse Scale Computers,” in Proceedings of
the Tenth International Symposium on Code Generation and Optimiza-
tion (CGO), CGO ’12, (New York, NY, USA), pp. 1–12, ACM, 2012.
Acceptance Rate: 28

[39] J. Mars and L. Tang, “Whare-map: Heterogeneity in ”homogeneous”
warehouse-scale computers,” in Proceedings of the 40th Annual Inter-
national Symposium on Computer Architecture (ISCA), ISCA ’13, (New
York, NY, USA), pp. 619–630, ACM, 2013.

[40] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-Aware Scheduling
for Heterogeneous Datacenters,” in Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), March 2013.

[41] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail: reducing
the flow completion time tail in datacenter networks,” ACM SIGCOMM
Computer Communication Review, vol. 42, no. 4, pp. 139–150, 2012.

[42] G. Zellweger, S. Gerber, K. Kourtis, and T. Roscoe, “Decoupling Cores,
Kernels, and Operating Systems,” in 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14), (Broomfield,
CO), pp. 17–31, USENIX Association, Oct. 2014.

[43] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion, “IX: A Protected Dataplane Operating System for High
Throughput and Low Latency,” in 11th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 14), (Broomfield,
CO), pp. 49–65, USENIX Association, Oct. 2014.

